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Preface

The problem of the transport of matter, momentum and energy in a plasma
submitted to temperature, pressure and velocity gradients combined with
external electric and magnetic fields is, without any doubt, one of the most
crucial aspects of plasma physics. In a nutshell, it can be said that the object of
transport theory is the response of a system (here: a plasma) to a sustained
external constraint. Let us make this statement more explicit.

Consider a material system which is in some kind of stationary state (it may
be a true thermodynamic equilibrium state, or some more general kind of
quasi-steady state, examples of which will be met later). At some time, a
“thermodynamic force” is applied, which disturbs the initial equilibrium. This
force may be an external force field, or it may be a spatial inhomogeneity (i.e.,
a gradient) of density, velocity or temperature. The system responds to this
stimulus: various kinds of motion set in. There may be an overall material
motion of the system, but also more subtle flows of momentum, energy or
electric charge, which are not necessarily accompanied by a global motion of
the matter.

The general tendency of the system is to react in such a way as to recover
its initial steady state (if the latter is stable) when the driving forces are
removed. If, however, the forces are sustained, many differrent things can
happen: the system evolves now under an external constraint, opposing its
return to equilibrium.

If the forces are maintained at a steady level and are not too strong, the
system may (or may not!) reach, after some time, a new, non-equilibrium
steady state, in which its state variables (such as the density and the tempera-
ture) retain constant values in time, but in which there .exist non-vanishing,
constant fluxes of matter, momentum, energy and/or electric charge. If,
however, the constraint is too strong, or if it varies in time, the response of the
system will be much more complex.

In any case, the result of the application of a thermodynamic force will be a
redistribution of matter, momentum, energy and charge throughout the sys-
tem, hence the appearance of more or less violent fluxes of these quantities.
We entered the realm of non-equilibrium physics, a field that is in full
expansion in the present days.

The importance of transport theory to plasma physics is enormous. It can
be briefly illustrated by the following examples.

The problem of Controlled Thermonuclear Fusion is based on the possibility
of confining a plasma inside a magnetic field configuration for a time long
enough to permit the start-up of the nuclear fusion reactions and the collection
of the energy produced by these reactions. But such “magnetic bottles” are
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vi Preface

never tight: there are unavoidable “leaks” which may be fatal to the confine-
ment. The control of these leaks implies a perfect knowledge and mastership
of the mechanisms of transport of matter and energy from the region of
production or deposition (i.e., in the core of the plasma) towards the walls, in
the presence of a strong confining magnetic field of complex toroidal geome-
try.

Astrophysics and Geophysics is another important field of applications of
plasma physics, as more than 90% of the matter in the universe is in the
plasma state. Here again, the problem of transport is crucial in understanding
a variety of complex phenomena. To quote just a few examples, the problem
of the solar phenomena (flares, protuberances, spots, . ..) requires a deep study
of magnetohydrodynamics in conditions where dissipation, hence transport, is
quite important. The fascinating processes of magnetic reconnection are basic
in the understanding of the phenomena (such as magnetic storms) occurring in
the magnetospheres surrounding the earth as well as other planets, each with
its own specificity. A fundamental question in the theory of reconnection is
the mechanism of “anomalous transport” which produces the necessary dis-
sipation. The latter, in absence of sufficiently frequent interparticle collisions,
must arise from subtle collective electromagnetic phenomena, including plasma
instabilities and turbulent processes.

Finally, we may briefly mention the more daily applications of plasma
physics to such phenomena as electrical discharges in gases, arcs, ..., where the
problems of electrical conductivity and thermal conductivity are again funda-
mental.

Besides these motivations arising from the applications, we may stress the
interest of transport theory for the theoretical physicist in the general frame-
work of non-equilibrium statistical physics, kinetic theory and non-equilibrium
thermodynamics. This problem was already of great historical importance since
the times of the founders of the kinetic theory of gases: Maxwell, Boltzmann,
Chapman, Enskog, Cowling. Since the relatively recent development of plasma
physics, an entirely new dimension appeared in transport theory. Unlike
neutral gases, plasmas consist of electrically charged particles interacting
through long-range forces: this in itself induces a vast variety of new phenom-
ena (especially collective behaviour of the particles). Moreover, because of
their electric charge, these particles are affected by external magnetic and
electric fields. This feature opens up a new level of interaction between the
system and the experimentalist. The latter may control the transport not only
by imposing temperature and pressure gradients, but also electromagnetic
fields of arbitrarily complex and subtle shape and time dependence. In turn,
the system may react to these external fields in ways which are often not
predicted by straightforward intuition: it may develop peculiar drift motions,
or instabilities that may lead to the breaking of the initial topology of the
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magnetic fields, and in the last stages, the motion (as well as the internal
electromagnetic fields) may become completely chaotic and turbulent. All
these features strongly influence the transport mechanisms. As a result, the
transport theory of plasmas is an incommensurably richer field than the
classical transport theory of neutral gases.

I have been “in love” with the statistical physics of plasmas over my whole
scientific life. Having studied for years the problems related to the “kinetic
stage”, i.e. the derivation of irreversible kinetic equations from the reversible
equations of classical and quantum mechanics. I wanted to complete the
programme of statistical physics by going over to the “hydrodynamic stage”,
in which the microscopic, molecular information is transferred to the observa-
ble, macroscopic level. Curiously enough, this stage has been somewhat
neglected by statistical physicists in recent years. This is the more regrettable
because, particularly in the field of plasma physics, the “hydrodynamic stage”
leads to the plasma transport theory with all its fascinating aspects.

For many years I was surprised by the absence of a specific monograph on
this subject. At present, a physicist wanting to enter this field has to begin his
study with five “classical” review papers:

— S.I. Braginskii, 1965, in: Reviews of Plasma Physics, Vol. 1, ed. M.N.
Lenotovich (Consultants Bureau, New York) [for the classical theory].

— ALA. Galeev and R.Z. Sagdeev, 1979, Reviews of Plasma Physics, vol. 7.

— F.L. Hinton and R.D. Hazeltine, 1976, Reviews of Modern Physics.

— S.P. Hirshman and D.J. Sigmar, 1981, Nuclear Fusion [the latter three
references concern the neoclassical theory].

— P.C. Liewer, 1985, Nuclear Fusion [for the anomalous transport].

He then must start the search for specific research papers, scattered in a
large number of journals, conference proceedings or laboratory reports. He
will have difficulties in the fact that these papers (including the review papers!)
do not try to present a global formulation within a general framework of
plasma transport, but rather present a special chapter from a specific point of
view.

The existing general textbooks or monographs on plasma physics usually
contain only a very small chapter devoted to plasma transport: it is presented
in’a very elementary and non-rigorous way.

I therefore decided to try to fill this gap and started working on the project
at the beginning of 1981. I soon began to understand the reason of this gap in
the literature. I realized that, if the subject were to be treated in the spirit I
had chosen, it would be absolutely impossible to cover the whole matter in a
single volume, even after the elimination of less essential aspects.

On the other hand, I realized that this matter could be divided in two
volumes, which could be conceived as self-contained entities. The first one
would include the so-called classical and neoclassical transport theories and the
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second one the anomalous transport theories. In the first volume, one studies
the transport mechanisms explained by the properties of individual particles,
which are the actors of the interactions among themselves and with the
external electromagnetic fields. In the second volume one would deal with the
collective transport mechanisms mentioned above. At the end of the work on
the first volume, it appeared that even this would give rise to a too thick book,
whose use would be unhandy: it was therefore decided to split it into two
parts. The numbering of the chapter remained, however, continuous, in order
to stress the intrinsic unity of the work. Thus, Part I is devoted to the classical
transport theory and contains chapters 1-7, and Part II devoted to the
neoclassical transport theory, contains chapters 8-19. The work on the second
volume, devoted to the anomalous transport is, at present, in a preliminary
stage and will not be published before several years.

I now wish to comment on the general spirit of this work. My objective was
to write a self-contained book, which the reader could study without having to
resort to side-references at every step. I therefore chose to present plasma
transport theory as a discipline strongly embedded in the framework of
theoretical physics. By the latter statement, I mean not only “plasma physics”
in a restricted sense, but more generally: Hamiltonian mechanics, statistical
physics, thermodynamics, hydrodynamics, electrodynamics. Plasma transport
theory precisely realizes a synthesis of all these fields: it can be characterized
as a truly interdisciplinary activity. This explains the presence of several
chapters in which the important concepts of these “peripheral” fields are
introduced, briefly but completely.

In making the unavoidable selections of the material, I decided to focus on
relatively simple situations. Thus, the plasma model used throughout the book
is a simple, fully ionized plasma consisting of electrons and a single species of
ions. Within this framework, the presentation is as exhaustive as possible: the
calculations are given in great detail) much greater than in the published
papers) in order to make its study as easy as possible. The assumptions are
discussed and every crucial step in the argument is commented both in its
physical and its mathematical aspects.

I developed a formalism which allows the presentation of all the features of
classical and neoclassical transport in a unified way, by using the same tools,
concepts, methods and notations throughout the book. The basic tool of this
formalism is the Hermitian moment method of solution ef the kinetic equa-
tions (chs. 4, 11, 12). Although inspired from the classic work of GRAD, it
goes well beyond its initial formulation, making it applicable to the whole
range of problems under consideration here. .

The final results are given in the form of completely explicit and simple
analytical formulae (a new feature!). These formulae enable one to calculate
numerical values of the transport coefficients with excellent precision on a
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pocket calculator. A large number of tables, figures and graphs are presented,
a feature usually absent in the transport literature. It is extremely helpful (in
my opinion) for the general intuition of the problem to have a pictorial view of
the phenomena. Moreover, many of these graphs allow a simple and rapid
reading of the numerical values of the transport coefficients.

A monograph like this one implies a large amount of compilation of a vast
amount of literature. I should like to stress, however, that the presentation is
never left at the primitive stage of a compilation, or even of a critical review
paper. I endeavoured to rethink all the known results and reformulate them in
the framework of a unified theory. Every single calculation in the book was
done and redone several times. As a result, the text went through several
successive versions before its finalization in its present form.

The level of the mathematics is rather unsophisticated. Most of the prob-
lems treated here appeal only to linear algebra and to elementary aspects of
differential equations. This should make the book accessible to a wide audi-
ence of experimental physicists, as well as to good undergraduate students.
The only less usual mathematical tools appearing here are those related to the
toroidal geometry: all the necessary concepts are discussed in detail in the text
and in the appendices.

The prerequisites are just the basic principles of statistical physics, kinetic
theory, electromagnetism and a feeling of plasma physics, as can be expected
from any physicist or engineer.

In conclusion, my main purpose in writing this book was a comprehensive
and unified presentation of the transport theory in plasmas. The reader will
judge the degree of success in the achievement of this endeavour.






PART I Classical transport theory

...TarTa pel . ..

(... all things are flowing...)

Heraclitus?
quoted by Aristotle.






Contents

Preface

INtrodUCHON . . .. ottt e e e e e e e e e e e

Chapter 1. Motion of a charged particle in an electromagnetic field . . .. .............

1.1.
1.2
1.3

1.4.

1.5.
1.6.
1.7.
1.8.

1.9.

INtroduction . . . . .. oottt e e
Hamiltonian Mechanics. Canonical and pseudo-canonical transformations . . . . . .
Magnetic field and magnetic field lines. Intrinsic local reference frame . .. ... ...
Equations of motion of a charged particle in an inhomogeneous stationary electro-
magnetic field. Particle variables . .. ............... ... ... o L,
Motion of a charged particle in simple electromagnetic fields. . . .............
The drift approximation: The method of the average .....................
The drift approximation: The averaging pseudo-canonical transformation. 1. Sta-
tionary, homogeneous fields . . . .. ...... ... ... ... ... ...
The drift approximation: The averaging pseudo-canonical transformation. II.
Stationary, spatially inhomogeneous fields . . . ...........................

The drift approximation: The averaging pseudo-canonical transformation. III.

Slowly time-dependent, inhomogeneous fields . .........................

R EIENCES . . o ittt ettt e e e

Chapter 2. The microscopic description ofaplasma . ..........................

2.1.
2.2.
2.3.
2.4,
2.5.
2.6.
2.7.
2.8.

Statistical descriptionof aplasma . .. .......... ... ... ... o L.
Liouville equation for independent particles in stationary external fields . . ... ...
Liouville equation for independent particles in time-dependent external fields . . . .
The BBGKY equations and the kinetic equation for interacting charged particles .
The Vlasov kineticequation . . ............. ...ttt
The Landau kinetiC eqUAtiOn . . ... .. ... ..vvvr e e e
Conservation properties of the collision term . ... .......................
The “Lorentz process”™ . .. .. ... ...ttt

Appendix 2A.1. Derivation of the collisionterm ...........................
References . ... ... ... .. e

Chapter 3. The macroscopic descriptionof aplasma ...........................

31
32.
33.
34.
3.5,

Local distribution functions . . .. ... ... ... .. . L
Macroscopic quantitiesof aplasma ..................... .. ... ... ...
Kinetic equation revisited . .. ..... ... .. ... e
Equations of evolution of the macroscopic quantities . ....................
The entropybalance ... ....... ... ... ... . .

References . ... .. i e e

24
30
39

50

58

69
76

79

79
84
91
98
104
107
114
118
123
130

133

133
136
144
146
155
161



xiv Contents

Chapter 4. The Hermitian moment representation . . .. .. .« .. cv o on .. 163
4.1. Characteristic time scales. The quasi-neutrality approximation . . . ............ 163
4.2. The local plasma equilibriumstate . ..................... ... ........ 167
4.3, The Hermitian moment expansion ...................... [P 170
4.4. Classificationof themoments . .............. ... ... i . 177
4.5. Equations of evolution for the moments. I. General form .................. 181
4.6. Equations of evolution for the moments. II. The generalized frictions . .. ....... 190
Appendix 4A.1. Derivation of the moment equations . ....................... 202
Appendix 4A.2. Proof of theresultsof table 6.1 . ........................... 205
Appendix 4A.3. Collisional contributions to the moment equations . ............. 207
References . .. .. ... ...t e e 209

Chapter 5. The classical transport theory . ........ ... ... .. ... i, 211
5.1. The linear transport Tegime .. .. ... ..ttt 211
5.2. Solution of the linearized moment equations. Asymptotics and Markovianization.

Moment description and thermodynamics . .. ............. ... . ... ... .. 217
5.3. The classical transport coefficients . .. .......... ... .................. 228
5.4. Numerical values of the transport coefficients. Convergence of the approximation

scheme . ... ... .. 235
5.5. Discussion of the transport equations .. ..................... ... 243
5.6. Limiting values of the transport coefficients in a very strong magnetic field . . . . . . 258
5.7. Comparison with other treatments . ............... ...t .. 264
References . . ... ... ... ittt e e 275

Chapter 6. Entropy and transport ... ... ... ... .. 277
6.1. Entropy balance and H-Theorem . ................. ... ... . ... .. ... 277
6.2. Entropy and Hermitian moments. The kinetic form of the entropy production ... 281
6.3. The thermodynamic form of the entropy production . ... .................. 286
6.4. The transport form of the entropy production .......................... 288
References . ... ...... ... . . 293

Chapter 7. Magnetohydrodynamics .. ........... ... ... .ot ereniieenne... 295
7.1. The classical hydrodynamical equations. Dissipative magnetohydrodynamics . ... 295
7.2. Resistive magnetohydrodynamics ... ............... .. i 299
7.3. Ideal magnetohydrodynamics . . . . ...... ... .. . ... 305
7.4. Magnetohydrodynamics, astrophysics and fusion. The strategy of fusion theory .. 311
References . ...... ... . it e e e 315

General appendix G1. Basis functions in velocity space ... ...................... 317
G1.1. Expansions around the reference distribution function . . ........ ... ... ... 317
G1.2. Reducible tensorial Hermite polynomials .. .......................... 318
G1.3. Spherical harmonics, Laguerre-Sonine polynomials, Burnett functions . .. .. ... 320
G1.4. Irreducible tensorial Hermite polynomials . .......................... 325

ReferenCes . . . . ittt e 330



Author index

Subject index

Contents

Index of nOtations ... .. .. ... ... ... ..ttt

Xv






Introduction

Part I of this work is devoted to the classical transport theory in plasmas. Th
meaning given to (or implied for) this term in the literature is somewhat
imprecise and largely conventional. In the present work we choose a restricted,
operational definition for this title.

The classical theory covers the transport phenomena in a plasma, consid-
ered as a collection of charged particles interacting through binary collisions, in
the presence of straight, homogeneous and stationary magnetic and electric
fields.

For denser plasmas, three- or four-body collisions can also be taken into
account in this framework. But the effects related to truly collective interac-
tions (through “waves”, < vortices”, “clumps”, etc.), which exist in a plasma as
a result of the long-range Coulomb forces, fall outside of the scope of the
classical theory and are the object of anomalous transport theory. On the other
hand, the magnetic field inhomogeneity and curvature produces quite specific
effects on the transport: these are studied under the heading of the neoclassi-
cal theory.

Even in this classical field, developed since many years, in which one could
think that everything was solved a long time ago, it is amazing to note the
enormous disparities in the presentation of the results by the various authors,
as a result of (often unstated) differences in the starting assumptions. I
therefore tried to present (see chapter 5) a complete, self-consistent and
self-contained view of the classical plasma transport theory. This presentation
turns out to be somewhat different from the usual ones (such as the univer-
sally quoted Braginskii formulation), for reasons discussed in detail in the text.
The advantage of the present form is its natural insertion into the general
framework of non-equilibrium thermodynamics, in particular in connection
with the entropy production, a concept that allows a deep understanding of the
structure of the transport theory. This subject is, unfortunately, not often
treated in detail in the plasma physics literature. It also leads to a natural
continuation into the domain of the neoclassical theory, hence to a unified
transport theory.

Many results or methods used here are new. Let me quote as an example
the presentation of the motion of charged particles in chapter 1. Unlike the
usual textbook presentations (based on not too well defined time averaging
methods) T chose to make use here of the elegant modern methods of

1



2 Introduction

Hamiltonian mechanics which allow a clear, precise and simple derivation of
the guiding centre motion. Such a presentation is a “premiére”, never yet used
in existing textbooks. Another example is the systematic use of irreducible
Hermite polynomials as a basis for the.expansions in velocity space. It appears
that these functions lead to much more transparent and compact formulae
than the Laguerre—Sonine polynomials, widely used in kinetic theory. As a
final example, I wish to underscore the application of non-equilibrium thermo-
dynamic methods and the analysis of the entropy production in connection
with plasma transport theory.

The general structure of the work reflects the natural progression from the
microscopic description of the plasma to its macroscopic picture as a fluid.
This is nothing other than the implementation of the programme of statistical
mechanics.

Chapter 1, therefore, starts with the study of the motion of an individual
charged particle in the presence of an electromagnetic field: this is a chapter of
“pure” Hamiltonian mechanics.

Chapter 2 introduces the tools of statistical mechanics for the study of large
collections of charged particles. 1t culminates in the derivation of a kinetic
equation, which provides us with the basic tool of transport theory.

In chapter 3, we go over from this intermediate level of molecular descrip-
tion to the macroscopic level, by deriving the hydrodynamic - or, better, the
plasmadynamic — balance equations. At this stage we meet with the intrinsic
difficulty of macroscopic physics: there are more unknowns than equations!
More precisely, the macroscopic dynamical equations have the structure of an
infinite hierarchy. This introduces the necessity of constructing a transport
theory, by which the infinite set of equations can be reduced to a finite, closed
set. This can only be done by a detailed analysis of the kinetic equation, under
well-defined conditions. The tools for such an analysis are developed in
chapter 4.

Chapter 5 is the central chapter of this volume. The transport equations,
relating the unknown fluxes of matter, momentum, energy and electricity to
the hydrodynamic variables (i.e. more precisely, to the thermodynamic forces)
are derived and discussed. The domain of validity of these equations defines
the realm of classical transport theory. It covers the situations where the
collisions dominate the evolution: the mean free path of the particles between
two collisions is much shorter than the typical macroscopic (hydrodynamic)
lengths.

In chapter 6 the results are incorporated into the wider framework of
non-equilibrium thermodynamics, by connecting the transport processes to the
central concept of entropy production.

Finally, in chapter 7, the results of transport theory are put back into the
equations of plasmadynamics, which are now closed and ready for use...
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As a final comment, I might try to answer a question which a pragmatic
plasma (in particular, fusion plasma) physicist might ask: “Why bother about
the classical transport theory, when it is well-known that it does not provide us
with the final explanation of experimental facts?”. A philosophically-minded
scientist, inspired by Popper’s views, might even say that classical transport
theory has been “falsified” by experiment.

I might answer these objections by first noting that classical transport
theory is an example of a complete, self-consistent and fully organized theory.
Besides its aesthetic appeal, it provides us with a solid understanding of the
basic transport processes.

Next, I would remark that I have a view of the development of physics that
is rather different from Popper’s (and which I share with many other theoreti-
cal physicists, in particular B. d’Espagnat). Science does not progress by
successive “falsifications” - and, thus, rejections — of existing theories and
their replacement by entirely different ones. The progress rather goes through
a succession of gradually larger, but concentric circles. A new theory gener-
alizes the present one, but the latter appears as a particular case of the former
and remains perfectly valid within a well-defined domain. Classical mechanics
was not “falsified” by the advent of relativity or of quantum mechanics. In the
1980’s many physicists work with classical mechanics, and many spectacular
new results were obtained in this “old” field.

In the same sense, classical transport theory retains its importance and may
still progress in the present days. Its role is not only confined to yielding
precise quantitative answers within its domain of validity. Its structure and its
tools will become the starting point of all the forthcoming developments and
even its detailed results (such as the parallel transport coefficients) will appear
as basic building blocks of the more general theories. I endeavoured to prove
these statements in Part II of this work, devoted to the neoclassical transport
theory.






1

Motion of a charged particle
in an electromagnetic field

1.1. Introduction

The whole subject of plasma physics can be reduced, in last analysis, to the
understanding of the motion of a set of charged particles in an electromagnetic
field. Having said this, we immediately stress the misleading nature of this
simple statement. As soon as it is expressed on a quantitative basis, one
realizes the overwhelming complexity of the problem,

Consider a single charged point particle entering a region of space per-
meated by an electromagnetic field, produced by some unspecified external
sources. When the latter reduces to a constant electric field E, every freshman
knows that the particle will undergo a uniform acceleration in the direction of
the field. On the contrary, in the presence of a constant magnetic field B, the
particle will perform a helical motion, wrapping itself around a field line.
When the two fields are present simultaneously, the motion is more complex,
but is still amenable to exact analysis. The particle no longer remains attached
to a single magnetic field line, but rather “drifts” through space in a direction
perpendicular to both the electric and the magnetic fields.

A constant electromagnetic field is a fiction which can, at best, be realized
only as an approximation valid in a restricted region of space and for a limited
span of time. Any realistic field is spatially inhomogeneous and nonstationary.
Clearly, even the slightest dependence of the fields on space and time makes
the equations of motion non-linear. The latter can no longer be solved exactly.
Two possibilities offer themselves. As a first choice, the equations can be
solved numerically with the help of a computer. This methods is important for
specific problems (such as the design of a particular experiment). However,
like all numerical methods, its results cannot be used directly for constructing
a general theory. A second choice is to develop specific approximation
methods, which allow the equations of motion to be solved analyticaily. (Note
that numerical results are often an invaluable guide for the construction of
analytical approximations!) Although limited by a set of validity conditions,
such methods have the enormous advantage of leading to the construction of a

5



6 Motion of a charged particle in an electromagnetic field [Chi

true theoretical framework in which an extended set of physical situations can
be treated in a transparent way.

These complicated problems are still far from exhausting the necessary
knowledge requested for plasma physics. Indeed, we now consider the situa-
tion obtained by injecting not one, but several charged particles into the region
occupied by the external electromagnetic field (“several” means about 10% for
any sizeable bit of a plasma!). Now we are stepping into an altogether superior
realm of complexity. The individual particles are no longer passive objects
which are pushed or pulled from one side to the other by a set of forces
determined once for all by external sources. By its mere moving presence, each
particle becomes the source of an electromagnetic field. As a result, each
particle is submitted to the combined action of the external field and of the
field created by the other particles in the plasma. At any point in space, the
intensity of the latter field depends on the position and momentum of the
corresponding point sources: it is a violently fluctuating function of space and
time. The fields created by the particles are the carriers of the interactions
between all the particles in the plasma. The equations of motion become an
enormous set of inextricably coupled non-linear equations. Even the most
powerful computer is at loss when confronted with such a formidable problem.

The way out of this apparent dilemma is well-known. One must start asking
different questions about the system. We shall no longer want to determine the
detailed trajectory of each particle, because we are unable to observe it
anyway. We shall rather ask questions about the global properties of the
plasma, which are observable on a macroscopic scale (e.g., the motion of the
fluid rather than of its constituent particles, the transport of energy from one
point to another, the propagation of a wave through the medium, etc.) In
doing so, the complexity of the system turns into an advantage. Indeed, the
large number of particles and the extreme irregularity of their motion lead to
the picture of a quasi-chaotic system, to which some of the concepts of
probability theory become applicable. We thus go over from ordinary mecha-
nics into the realm of statistical mechanics and of its daughter, kinetic theory.

It is, of course, out of the question to develop in the present book the
details of statistical mechanics and of kinetic theory. Many books on this
subject exist on the market (e.g., Balescu 1963, 1975, Landau and Lifshitz
1980, Lifshitz and Pitaevskii 1981, Akhiezer and Peletminskii 1981 and
Klimontovich 1964, 1982). We shall assume the reader to be familiar with the
elements of statistical physics; we shall, however, provide sketchy derivations
of some of the key properties.

In the present chapter we study the simpler aspects of the motion of the
individual charged particle in electromagnetic fields. Before really starting, we
introduce the subject by two preparatory sections. Section 1.2 is a (rather
unorthodox) review of Hamiltonian mechanics, where we develop a quite
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important theoretical tool for the study of charged particle dynamics. In
section 1.3 we recall some important concepts from differential geometry,
which are useful for understanding and describing any vector field, such as the
magnetic field.

1.2. Hamiltonian mechanics. Canonical and pseudo-canonical
transformations

Hamilton’s formulation of classical mechanics is a standard chapter of
mathematical physics (one of the best presentations is found in the book by
Goldstein 1980, see also Arnold 1978). It is, however, advantageous to look at
Hamiltonian mechanics from a slightly non-standard point of view which,
besides its elegance, has proved in recent years to be extremely useful in
applications. We believe that the first work done in this “algebraic” spirit is
the paper by Dirac (1949) on classical relativistic mechanics. His ideas were
developed systematically in the review paper by Currie et al. (1963) and
applied to statistical mechanics by Balescu and Kotera (1967), and by Balescu
et al. (1967). Significant papers in this spirit are also those by Bialynicki-Birula
(1970, 1975), Bialynicki-Birula and Iwinski (1973) and Balescu and Poulain
(1974). Subsequently, Sudarshan and Mukunda (1974) published a complete
textbook on classical mechanics, based on this philosophy. The applications to
the present problem came from an independent direction and will be discussed
in the forthcoming sections.

Any theory of a system evolving in time must be constructed upon two
concepts: a definition of the state of the system, and a definition of the law of
evolution. In classical Hamiltonian mechanics, the state of a system of f
degrees of freedom requires the specification of 2f variables which are taken
(in a first stage) as the generalized coordinates ¢g; and momenta p,,

(qi’ pi)’ i=1,2,...,f (2.1)

The law of motion is governed by a specified function of the state variables:
the Hamiltonian H(q, p). Here (g, p) is an abbreviation for the set
(91>--->45> P1s---» Py)- Here, and in all forthcoming sections up to section 1.9,
we assume the Hamiltonian to be independent of the time, ¢. The system is
then called an autonomous system. The motion, ie., the change in time of the
positions and of the momenta, is determined by the Hamilton equation

M i)»(t)=—aH(q’ p)

q‘i(t) N op; ’ 9q;

2.2)
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Besides ¢, and p;, we are interested in many other quantities which take
definite values in each state of the system. The Hamiltonian, as well as other
physical quantities, such as the total momentum, the angular momentum, etc.,
are obvious physical examples. A subtler example is provided by the solution
of egs. (2.2). The coordinate g,(¢) at time ¢ is a function of the initial
coordinates and momenta ¢;, p; and of the time. We decide from here on to
take the set (g, p), representing the coordinates and the momenta at a given
(initial) time, as the variables spanning a (fixed) phase space of the dynamical
system. All the quantities mentioned above are then defined (in classical
mechanics) as functions of the phase space coordinates (g, p), possibly
depending on some “external parameters” «; they will be called dynamical
functions and will be denoted by a, b,...:

a=a(q, p; a). (2.3)

Typical examples of external parameters are: the time ¢, parameters char-
acterizing the system (such as the mass m, or the charge ¢), or characterizing
the environment (such as the magnetic field B), or universal constants (such
as the speed of light ¢), or simply numerical constants. '

We now consider the set 2 of all the dynamical functions and define the
permissible operations on its members; in other words, we endow the set with
an algebraic structure. We postulate that, for any member a, b,... €2, the
result of the following operations is also a member of the set Z:
Multiplication by an external parameter:

aa=c, cED. (2.4)

Linear combination *:

aa+pBb=d, d€I. (2.5)
Multiplication:

a-b=e, ecg. (2.6)
Inversion:

al=f, feo. (2.7)

* The mathematical operation of linear combination is restricted by physical considerations.
Only quantities having the same physical dimension can be superposed. This restriction is far from
trivial, because ¢ and p have different dimensions. Hence d exists only if there exist external
parameters such that aa and Bb have the same dimensioms. Another restriction comes from the
requirement that only quantities of the same tensorial nature (scalars, vectors,...) can be added.
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These operations have their usual algebraic meaning and properties. Clearly,
-aking ¢ and p as “building blocks”, we can construct by means of these
operations very wide classes of dynamical functions (e.g. polynomials, analyti-
cal functions, meromorphic functions, Fourier series, etc.). But the truly
characteristic feature of the set 2 is obtained by defining an additional
operation, the Lie bracket,

[a,b]=g g<2, (2.8)
with the following properties. It is an antisymmetric operation:

[a, b] = —[b, a]. (2.9)
It is a non-associative operation, governed by the Jacobi relation:

[[a, 8], c] +[[&, c], a] + [[c, a], ] =0. (2.10)

It is related as follows to the three basic operations (2.4)—(2.6):

[aa, b] =ala, b], (2.11)
[aa + Bb, c] =ala, c] + B[b, c], (2.12)
[ab, c] =alb, c] +b]a, c]. (2.13)

The set 2 of dynamical functions, endowed with the operations (2.4)—(2.8),
is called a Lie algebra.

The three rules (2.11)—(2.13) imply that the Lie bracket has properties
analogous to a first order differential operator. They imply the following
important, easily derived relation

/
da da
1= _— : -_— .
[a(g, p), b] = El(aql_[q,, bl + 5, Lpis B1). (2.14)

Iterating this relation, we find

[a(q. p), b(q, p)]

f
da 0b da 0b
= - 7 + ,
igl jgl(aqi aq,[q' q] aq, apj[ql P,]
da db da
p, aq [P g ] a3 ap; ap [Pu Pj] (2.15)
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This very important relation enables us to calculate explicitly the Lie
bracket of any pair of functions of the phase space coordinates, provided we
know the fundamental Lie brackets of the “building stones” g;, p;. At this
stage in the Hamiltonian formalism, we postulate the following value of the
fundamental Lie brackets:

[g:. ¢,1=0,
[pia pj]=0’
[qi’ pj]=8ija ia ]=1a2”f (216)

For completeness, the following relations
[aa qi] = Oa
le, p1=0, i=1,2,....f (2.17)

must be added for any external parameter a. Actually, egs. (2.17) can be
considered as a general definition of an external parameter. Equations (2.16)
can be called the Lie multiplication table of the Lie algebra £ in the variables
(g, p;). Any set of variables satisfying (2.16) is called a set of canonical
variables. It is also said that ¢, and p; are canonically conjugate.

Combining (2.15) and (2.16), we are in a position of calculating explicitly
the Lie bracket of any pair of dynamical functions. The former equation
reduces to

[a(q. p), b(q. p)]= X dq, 8p, dp, dg,

i=1

f
(aa 0b 09a 0b ) (2.18)

This is the familiar expression of the Poisson bracket. 1t appears as a specific
realization of the Lie bracket, valid when the fundamental variables q,, p; are
canonical.

The special importance of the Lie bracket for dynamics comes from the
following postulate: The evolution in time of any dynamical function, due to the
motion of the system, is determined by the equation

i=[a, H]. (2.19)

This is the most general form of the equation of motion in the Hamiltonian
formalism. Using the Poisson bracket (2.18), we easily see that (2.19) reduces
to Hamilton’s equations (2.2) when we take for a the particular functions g¢;,
P



§1.2] Hamiltonian mechanics 11

We now discuss a topic that turns out to be very important for the
forthcoming applications: transformation theory. For some theoretical or prac-
tical reasons, it may turn out that the initial choice of canonical variables
(g, p;)is not the most suitable one for a given problem. One may want to use
some other set of variables which, for example, relates more closely to the
symmetry of the problem. In all classical textbooks (e.g. Goldstein 1980) it is
shown in detail that a certain class of transformations of variables plays a
privileged role in the framework of Hamiltonian theory.

Consider a change of variables from (g;, p;) to (Qf, Pf), defined by

Q7 =0:(q, p), P°=P(q, p). (2.20)

The transformation is called a canonical transformation if the new variables
are again canonically conjugate:

[0f, 05] =0, [Pr P7]=0, [of, PF] =8, (2.21)

It is easily shown that as a consequence of these relations, the Jacobian J°¢
of a canonical transformation equals one:

J=1, (2.22)

This property is easily checked in the case of a single degree of freedom. We
calculate, by using (2.18),

30° aP°  3Q° 3P°

If Q°, P¢ are to be canonical, we must have

8" 80"
¢ pe 9g  p .
[0, ¥l = aPc  9P° =J=1
dq ap

A general proof is given below, see eq. (2.36).

The main property of the canonical transformations pertains to their
leaving the Hamilton equations (2.2) form-invariant. In other words, the equa-
tions of motion for Q7, P° are

.. 0H(Q°, P°) e OH(QS, P°)
Y Pe » B=-—5— 0 . (2.23)
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Let us also check this property for a single degree of freedom. Using (2.19)
and (2.18) we have

.. 30°dH 3Q° 3H
ge= Q0 3H 30" 3

We now note

OH _ 3H 3Q° N dH dP°
dp dQ° dp  AP° op

with a similar formula for dH /d4. Substituting these relations in the right-hand
side of the previous equation, we obtain

c_ OH (3Q°3P° 93Q°3P°\ _OH | poq_ OH
Q_E)Pc(aq ap dp aq) apc[Q’P] aP°’

the last equality following from (2.21).

The literature on Hamiltonian dynamics is dominated by canonical
transformations. This is, however, a drawback, because it is often impossible
to use physically convenient variables which are at the same time canonically
conjugate. Only in recent years was it realized explicitly that the really
important feature of Hamiltonian mechanics is the algebraic structure of the
set 2 of dynamical functions, together with the dynamical law (2.19), rather
than the particular form (2.2). Indeed, the operations (2.4)-(2.8) and the
dynamical law (2.19) are formulated in a form that is independent of any
particular choice of phase space variables (or ““building stones”). They can be
translated consistently into any set of coordinates, whether canonical or not.
The importance of the freedom and flexibility provided by the use of non-
canonical variables is particularly striking in electromagnetic problems. This
was the main motivation of the first works using non-canonical Hamiltonian
mechanics (Bialynicki-Birula 1970, 1975, Bialynicki-Birula and Iwinski 1973,
Balescu and Poulain 1974 and Littlejohn 1979, 1981, 1983). Let us see how the
method is made operational.

The starting point is the definition of a dynamical system as a Lie algebra
2 and its initial realization in terms of a set of canonical coordinates (g;, p;).
[In other words, everything we said up to eq. (2.19) is valid as it stands]. We
now introduce an arbitrary, invertible change of variables to (Q;, P;):

0,=0:(q, p), P,=P/(q, p). (2.24)
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The new variables (Q,, P,) are, in general, not canonical. In other words,
egs. (2.21) do not hold for the new variables. On the other hand, the
definitions (2.24) and the rules (2.9)—(2.15) allow us to calculate explicitly the
fundamental Lie brackets of the new variables:

[2.. 0] =%,(Q, P),

[P, B] =9,(Q, P),

[0/, B]=#,(0, P), i,j=1,2,...,f. (2.25)
Of course, we still have

[a, 0] =0,

[a, P]=0, i=1,2,...,f. (2.26)
We note the necessary relations

F=—%

i i gij= —gji’ [Pi’ Q;] = _'%’}i: (2-27)
which result from the antisymmetry of the Lie bracket. Equations (2.25)
constitute the Lie multiplication table of 2 in the variables (Q;, P;). The main
difference with (2.16) lies in the fact that the fundamental Lie brackets are no
longer constants (0 or 1), but are non-trivial dynamical functions.

For the simplicity of language, we propose to call any transformation of
phase space variables (q;, p;) = (Q,, P;) a pseudo-canonical transformation
whenever it is specified as follows:

(a) (Q;, P,) are related to (g,, p;) by a set of 2f invertible (sufficiently
regular) point functions (2.24);

(b) a Lie multiplication table of the set (Q,, P;) is specified by (2.25),
consistently with the Lie multiplication table of the initial variables (g;, p;). In
other words, the Lie algebra structure of (g;, p;) is “imprinted” upon (Q;, P;).

This implies, specifically, the following operations. For calculating [Q;, ],
say, one first considers Q; and P; as functions of the old variables (g, p); one
calculates the Lie bracket of these dynamical functions by the rules of the Lie
algebra in the (g, p) variables; the resulting dynamical function #4,;(q, p) is
expressed in terms of the new variables by using the inverse transformation of
(2.24),

hij(q(Q’ P)’ P(Q, P)) =‘9fij(Q’ P)
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A pseudo-canonical transformation reduces to a canonical one whenever
the Lie multiplication table of the new variables is of the form (2.21).

We have seen above that the Jacobian of a canonical transformation equals
one (see 2.22); this property is lost for a pseudo-canonical transformation
(2.24). We now show that the Jacobian of the latter transformation is simply
related to the fundamental Lie brackets (Littlejohn 1979). We introduce the
2 f-dimensional vectors

Zi=(ql,_,,,qf, pla---,Pf),
Z'=(Q1,--,Qp, P, P), i=1,2,...,2f. (2.28)

We also consider the matrices o and 3, whose elements are

V=2, 2], i, j=1,2,....2f. | (2.29)

They are simply the matrices associated with the fundamental Lie brackets.
Clearly, the variables (¢, p) being canonical, we have

o I
o=(_, 0), (2.30)
where I is the X f unit matrix. We also have

z=(_§ﬁ 3;) (2.31)

where #, 9 and S are the fXf matrices whose elements are defined by
(2.25), and 7T is the transpose of . The relation between the matrices =
and o is found by considering Z = Z(z), defined by (2.24) and using the
Poisson bracket (2.18),

f . . . . 2f  2f . ;
G et 3Z' 9z/ 9z’ 3z’ az' .0z’
=12, 2 = Y\ 33 "5 e | = L X 5,0

k=1 aqk apk aqk apk m=1n=1 9z" )

(2.32)
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This relation demonstrates the remarkable property that the matrix of the
fundamental Lie brackets transforms under (2.24) as a contravariant second-
rank tensor. Calculating now the determinant of both sides, we have

9Z*k
120 = ol (” ) (2.33)
but, clearly,
ol =1. (2.34)

On the other hand, the determinant between parentheses in (2.33) is simply the
inverse of the Jacobian J of the transformation z — Z [or (g, p) — (Q, P)I:

Az 1
We thus obtain from (2.33)
1
Ji=——. 2.36
1= (2.36)

This remarkable relation allows us to calculate very simply the Jacobian of the
pseudo-canonical transformation from the Lie multiplication table. Clearly,
(2.36) reduces to (2.22) for a canonical transformation, because of (2.34).

Once the fundamental Lie brackets are determined, the Lie bracket of any
pair of dynamical functions can be calculated explicitly by using the rules
(2.9)-(2.13). Note, in particular, that (2.15) is still valid with the variables
(Q, P) replacing (g, p); indeed it is a direct consequence of the rules
(2.11)-(2.13), which do not require the variables (¢, p) to be canonical. Using
(2.25), eq. (2.15) is easily rearranged into

{a(Q, P), b(Q, P)]

f f
da b da dob 9da db
=X X a—inij(Q, P)+(8_Qi8_1’j_8_1’,»3_Q,~ #,(Q, P)

i=1 j=1

da db
+ a_aa_zygff(Q’ P)]-

(2.37)
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This formula provides us with an explicit realization of the Lie bracket in
arbitrary, non-canonical variables. Note that in the particular case when (Q, P)
are canonical [ie. #;;=9¢,;=0, 5, =3§;], eq. (2.37) reduces to the Poisson
bracket (2.18).

Finally, the equations of motion are given directly by (2.19):

0,=[0, H(Q, P)], P=[P, H(Q, P)]. (2.38)

Using (2.37) these equations can also be written in the explicit, though less
compact form

. 0H(Q, P
) (%(Q, LD (0 P)—%,—)),
j=1 J J

f
5 (—x:-,—(g, Rl P)ﬁﬁ%‘”—)). (2.39)

,

These are the generalizations of the Hamilton equations for a set of
non-canonical variables. They reduce to egs. (2.21) or (2.2) when (Q, P) are
canonical.

An elegant, but less explicit formula is obtained by using notations
(2.28)-(2.31),

7/ =3%(2) 592—,(11(2). (2.40)

1.3. Magnetic field and magnetic field lines. Intrinsic local refer-
ence frame .

The dynamical systems of major interest to us consist of charged particles
moving in the presence of an electric and a magnetic field. The former is a
rather “classical” force field, not very different from gravitation; it does not
require a special discussion at this point. Magnetic fields, on the other hand,
are rather “unorthodox”: they act on the particles through the Lorentz force,
which depends on the velocity and is directed perpendicularly to the field.
Given the importance of magnetic fields in plasma physics, we give here a first
geometrical discussion of the magnetic -field, which prepares the dynamical
studies to follow. This discussion is further amplified in chapter 8.

We consider a region of space, bounded or infinite, which is permeated by a
magnetic field. We do not bother at this point about the sources of this field.
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In order to do analytical geometry, we need to define a reference frame, whic
allows us to characterize each point in space by a set of three numbers, its
coordinates. This reference frame is defined by a triad of mutually perpendicu-
lar unit vectors (i.e. a basis) located at a point O called the origin. The
position of the origin and the orientation of the basis vectors can be chosen
quite arbitrarily. We call this the absolute reference frame. In this frame, each
point is defined by its three Cartesian coordinates (x,, Xx,, X3), Or, equi-
valently, by the vector x going from the origin O to the point considered.

The magnetic field is a vector field: with each point in space, it associates a
vector B(x). We assume here that the field is static, i.e. time-independent. The
components of the magnetic field along the directions of the absolute refer-
ence frame will be denoted by B;(x) (i =1, 2, 3). The B,(x) are assumed to be
continuous and twice differentiable, with the possible exception of a finite
number of singular points. Alternatively, one may say that, in each point, the
magnetic field is characterized by a scalar (a non-negative number) called the
intensity (or strength), defined as the length of the vector:

1/2

: (3.1)

3

2 B}

B(x)=B(x)| =

and by a unit vector b(x), defining a characteristic direction in each point,

b(x) = ——B(x). (3.2)

B( )
We may thus write alternatively
B(x)=B(x) b(x). (3.3)

In general, both the intensity and the direction of the unit vector vary in
space. We may, however, consider the following particular cases, which occur
when one or the other factor is constant:

B(x)=Bb homogeneous field (3.4)
B(x)=B(x)b straight inhomogeneous field (3.5)
B(x)=Bb(x) curved field of constant intensity (3.6)

(the concepts of straightness and of curvature will be defined presently).
We now note that a vector field can also be described in a different (though
equivalent) way. We start at a given point x, at which the field has the value
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Fig. 3.1. The two points of view in describing a vector field. (A) Set of vectors. (B) Set of curves
(field lines).

B(x). We define a small (infinitesimal) section of a curve, which is tangent to
the vector B(x) at x. At the end, x + dx, of this small section we add another
section which is tangent to the vector B(x + dx), and continue this process
indefinitely. We have thus associated with the initial point x an infinite
(one-parameter) set of points, i.e. a curve, which is tangent at each point to the
local vector of the field. We thus arrive at a view of the space in which the
points are no longer independent, but are structured as a set of curves, called
field lines (fig. 3.1). Alternatively, one may say that through each point passes
a field line, defined parametrically in the form x=x(r), where 7 is an
arbitrary parameter. In order to express the tangency condition, these curves
must satisfy the differential equation

dx ~
E;=B(x('r)‘)EB('r), (3.7)
which can also be expressed in the more familiar form

=3 — g, (3.8)

The particular field line passing through the given point x is the solution of
the differential equation (3.7), satisfying the initial condition

x(t1=0)==x. (3.9)
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We now introduce some important concepts from the differential geometry
of curves (see e.g. Smirnov 1970, Vol. 2, Doubrovine et al. 1982, Vol. 1). The
length s,y of an arc of the curve (3.7) is defined as

-fdf

where we introduced the infinitesimal arc length ds by

l deB(T) f (3.10)

ds=B(r) dr. (3.11)

The parameter s is the natural parameter. When the equation of the curve is
expressed as a function of s, all the important concepts take a particularly
simple form. Thus, from (3.7) and (3.11) we obtain

ax(s) _drdx_1
ds dsdr §

B.

Hence, the equation of the field line, expressed in terms of the natural
parameter, is

dx(s) = b(x(s)) = b(s). (3.12)

This result also shows that (dx/ds) is precisely the unit vector along the
tangent to the curve at s. In the case when b reduces to a constant, the tangent
points in a constant direction, and the field line is a straight line: one says that
the field is straight (see egs. 3.4 and 3.5).

Consider now another field F(x) defined in space. This field may be of
whatever nature: scalar, vector, etc. We now ask how this field varies when x
travels along a magnetic field line. In this case, F(x) becomes a function F (s)
of the parameter s,

F(x) = F(x(s))=F(s).

It is often important to calculate the derivative of F(s) with respect to s,
i.e, the derivative of F(x) along the field line. Clearly,

dI;(ss) % algix)_[b(x).v]p(x)_ (3.13)
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b

Fig. 3.2. The Frenet triad at point x. It consists of the unit vectors N along the principal normal,
B along the binormal and b along the tangent. The centre of curvature C is at a distance p from
x. Also shown is the absolute reference frame (x;, x5, x3).

We now come back to (3.12). As a constant b corresponds to a straight line,
it is intuitively clear that the rate of change of b is related to the concept of
curvature. We therefore define the curvature vector k as

k()= 420) _=0)

. (3.14)

This vector is perpendicular to b and points toward the concave side of the
curve (fig. 3.2). This: follows from the fact that b(s) is a unit vector, hence

, d. 1d,, d.
b'ab— _(Gb (S)— 51—0

N =
N =

The length of this vector k(s) defines the radius of curvature p,

%ﬂi‘% , . (3.15)

Note that, by definition, p is a non-negative number. The direction of the
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curvature vector defines the principal normal, characterized by the unit vector
N(s),

k(s)= (S)N(s). (3.16)

We also define a point C(x) lying on the principal normal at a distance
p(x) from x on the concave side. This point is called the centre of curvature.
An infinitesimal arc of the curve in the neighbourhood of x can be assimilated
to an infinitesimal arc of a circle of radius p(x), centered at C(x).

We now switch to the “field description” by using (3.13), applied to
F(x)=5b(x). In this way, we associate with b(x) a new vector field N(x)
through

db(s

LU [b(x)-915(x) = == N(). (3.17)

p(x)

The local radius of curvature is

—1—=l(b'V)b|- (3.18)
p(x)

Having defined in each point two mutually perpendicular unit vectors b
and N, it is easy to define a third one, 8, perpendicular to both. It is called the
unit vector along the binormal,

B(x)=b(x) AN(x). (3.19)

If this vector is constant, it is easily seen that the curve x(s) lies in a plane.
Therefore, the derivative of B(s)= B[x(s)] measures the rate at which the
field line “goes out of the plane” and is therefore called the torsion vector k. It
is easily proved from (3.19) that this vector is directed along the principal
normal, thus

dﬁ(s =[b(x)- v]B(x)—(—)N(x) (3.20)

The radius of torsion 7 is thus defined as
1
—=N-[(b-v)B]. (3.21)

Unlike p, the radius of torsion T may be negative.
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The derivative of N with respect to s does not introduce any new quantity,
but it is related to the ones already defined, as can easily be shown. We collect
here the three relations which are celebrated under the name of Frenet’s
formulae:

diil(ss) =(b.v)b=%N, (3.22)
dlzgs) =(b+v)N= —%B— %b, (3.23)
d[z(ss) =(b~V)B=%N, (3.24)

The main result of this discussion is the following. Given an inhomoge-
neous vector field B(x), we have been able to attach to each point not only
one, but three characteristic directions, the orientation of which is entirely
determined by the geometry of the field. In other words, there exists at each
point an orthogonal right-handed triad, called the Frenet triad [N(x), B(x),
b(x)] with the relations

N=BAb, B=bAN, b=NAB. (3.25)

This is a very important result, because it allows us to define in each point
x a local reference frame which is perfectly adapted to the geometry of the
magnetic field and provides us with the natural frame for the description of
the phenomena in a magnetic field.

We note, however, that this situation degenerates in the case of a straight
field, i.e., when the radius of curvature becomes infinite,

(b-v)b=0. (3.26)

In this case, we see from (3.17) that the direction of the principal normal
(hence also of the binormal) is no longer determined. In other words, whereas
one direction, b, is still fixed at each point, the two other directions, N and B8,
become arbitrary. In this case we are still able to define a local reference frame
by the following conventions.

(a) Straight inhomogeneous field (3.5). In this case, there exists, besides b,
another intrinsic local direction fixed by the field: the gradient of its intensity.
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j3

Xy A

! B

Fig. 3.3. Degenerate local triads. (A) Straight inhomogeneous field: the local vector N’ points
along b A VB(x). (B) Homogeneous field: the local triad is everywhere parallel to the absolute
one.

We introduce the unit vector N’ defined as

b(x) AVB(x)

N () =00

(3.27)

and a third vector
B’ (x)=b(x)AN'(x). (3.28)

We can thus again construct an intrinsic local triad entirely determined by the
geometry of the field (see fig. 3.3). In this case the local triad has one vector,
b, pointing in a constant direction, and two others which, in general, turn
around the axis b as the point x moves along a field line.

Note, however, that this construction is possible only when the gradient of
B(x) is not everywhere parallel to the direction of the field. In the particular
case when

bAVB(x)=0 Vx (3.29)

the gradient of B no longer defines a direction in space distinct of b, and we
are in a situation similar to the homogeneous field.

(b) Homogeneous field (3.4), or straight field (3.5) with b A vB = 0. In this
case, there is nothing in the field which allows us to define more than one
characteristic direction, the same in all space. We have absolute cylindrical
symmetry: all directions perpendicular to b are equivalent. We may therefore
choose the absolute reference frame in such a way that the direction Ox; is
parallel to the constant field, and choose the direction Ox; (hence Ox,)
arbitrarily. We then define the local triad as being everywhere parallel to the
absolute frame.
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1.4. Equations of motion of a charged particle in an inhomogeneous
stationary electromagnetic field. Particle variables

We now begin the study of the motion of a single point particle of mass m and
charge e. The particle moves under the action of a given (external) magnetic
field B(x) and of a given (external) electric field E(x). It is assumed here that
both fields may be inhomogeneous (i.e. may depend on the position x in
space), but that they are stationary, i.e. their value at any position does not
depend on time. These static fields can also be characterized by a vector
potential 4(x) and a scalar potential @(x), to which they are related by the
well-known relations

B(x)=vAA(x), (4.1)
E(x)=—-v®(x). (4.2)

The derivation of the equations of motion from Hamilton’s variational
principle is a classical matter, treated in most textbooks on electromagnetic
theory or mechanics (e.g. Landau and Lifshitz, 1957, Goldstein, 1980). We do
not reproduce it here, but briefly recall the results. ‘

Our dynamical system has three degrees of freedom (f = 3). We define the
three coordinates ¢;, q,, ¢, as the Cartesian coordinates of the spatial point
where the particle is located (briefly: the position of the particle). These three
coordinates ¢; (i =1, 2, 3) are the components of a vector g. The remaining
three phase space variables, i.e. the components p, (i =1, 2, 3) of the momen-
tum p of the particle must be defined via the Lagrangian [ p, = 9L/9d4;] in order
to ensure the correct canonical conjugation of ¢; and p,. The Hamiltonian of
the system is well-known:

2

1 + ed(q). (43)

H(g, p)=5_|P- %A(q)

From this Hamiltonian, expressed in canonical variables, the equations of
motion are immediately obtained from (2.2). For the sake of easy reference, we
collect all the relevant equations in table 4.1.

One immediately sees that the canonical variables are indeed very incon-
venient in this problem. The main reason is that the canonical momentum p
does not have any simple physical meaning. In particular, it cannot be
identified with the mechanical momentum =, defined as usual by 7 = mo,
where v is the velocity of the particle. From eq. (3) in table (4.1) we have

7r=mv=p—§A(q). (4.4)

For the same reason, we do not see the Lorentz force appear clearly in eq. (4).
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Table 4.1
Canonical particle variables ¢, p.

Fundamental Lie brackets
[qi’ qj]=0’ [qn pj] 811’ [pir pj]=0' (1)
Hamiltonian
1 e |
———’n—,p—;A, +ed. (2)

Egquations of motion

. _ 1 _e
qi_m(pi cAi)’ ®)
, e

Remarks

All fields A, @ are evaluated at x=4¢; V,=(3/3g;).

It is therefore tempting to use the mechanical momentum a, or the velocity
v as a suitable phase space variable, instead of p (leaving the position ¢
unchanged). But it is easily seen that the transformation (g, p) — (g, v) is not
canonical. Indeed, let us calculate, for instance,

5 (2o B0 B, Boy

v, U] =
[01, va] 0g, 0p,  Op, gy

- ;lez—c Y[ (vidy)d, + 8k1(va2)]

e e
== (v14, - v,4;) = —B;(q),
¢ mc

where we made use of (4.1). We therefore need, even in this simple case, to use
the Hamiltonian formalism in non-canonical variables developed in section 1.2,
taking Q,=g¢;, P,=v,. We follow the steps indicated in section 1.2 and
calculate successively the fundamental Lie brackets, the Jacobian of the
transformation (g, p) — (g, v), the Hamiltonian expressed in terms of the new
variables, and finally the equations of motion, evaluating the Lie brackets in
(2.38) by means of (2.37). The results are collected in table 4.2,
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Table 4.2
Particle variables ¢, v.

Definition
1 e
q9=4, v=;(p—;A). ¢))
Fundamental Lie brackets
-1 =% ¢.B 2
{g:. 4;1=0, {g:, v]= o fvi, v]= ‘Eeijk ke @

Jacobian (g, p) = (g, v)

J=m3. 3)
Hamiltonian
H=imv’+ed. 4

Equations of motion

i=v, )
e e
p= — +—E. 6
o c(v/\B) mE (6)
Remarks

All fields: 4, @, B, E, are evaluated at x =gq.

Now, the equations of motion are perfectly transparent. We clearly recog-
nize in eq. (6} of table 4.2 the Lorentz force

F=e(E+c 'onB). 4.5)

The Hamiltonian (4) also has a clear form, being the sum of the kinetic and
the potential energy. Here we may discuss an interesting feature. The Hamilto-
nian (4) is independent of the magnetic field. This is physically clear: as the
magnetic term in the Lorentz force is always perpendicular to the velocity of
the particle, the magnetic field does no work. How then does the magnetic
field enter the equations of motion (6)? The answer is: through the non-canoni-
cal Lie brackets (2). Indeed, we may directly calculate

b= [v;, v + @] = my;[v;, v;] + e v,D[v;, q,]

e e e e
= e uBi— v 0= (vAB),+E,.
mcufs’f"B" mV,‘P mc( ); mE’
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Magnetic Field Line

Particle Trajectory

Fig. 41. Absolute reference frame (x,, x,, x3), fixed local reference frame (e, e;, b), and
moving local reference frame (n,, n,, b).

We now proceed to a third choice of variables, which is useful for the
following reason. It is clear from eq. (6) that the components of the velocity
parallel (v;) and perpendicular (v,) to the magnetic field will play very
different roles, in as much as the Lorentz force only depends on the latter.
Writing v=v;+v,, we wish to derive equations of motion for the two
separate components. In so doing, we necessarily arrive at a local description,
because in a non-uniform field, the orientation of these two components varies
from point to point. We must carefully define the geometry of the problem
(fig. 4.1), using the results of section 1.3. We consider first an “absolute”
reference frame (x;, X,, x) with an arbitrary origin O, which is fixed once for
all in space. Next, we define a local reference frame attached to each point of
(absolute) coordinates x; the orientation of this frame varies, in general, from
one point to another. Its definition involves the specification of a right-handed
triad of mutually orthogonal unit vectors at each point. We want this local
reference frame to be intrinsically determined by the geometry of the magnetic
field line passing through that point. The discussion in the previous paragraph
provides us with the answer. In all cases, one of the vectors of the triad is the
tangent unit vector b(x) along the field. Next, we must choose two additional
unit vectors e;(x), e,(x), both perpendicular to b(x), which complete a
right-handed triad

ei(x) Aey(x) =b(x). (4.6)
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On the basis of the results of section 1.3, we define these vectors as follows.
(a) General inhomogeneous and curved field:

ei(x) =N(x), e (x)=8B(x), (47)

where N and B are unit vectors directed along the principal normal and the
binormal of the magnetic field line, respectively.
(b) Straight inhomogeneous field:

bAVB(x)

SB(x)| e,(x)=b(x) Ae(x). (4.8)

e(x)=

(c) Homogeneous field, or straight field with b A VB = 0:

The absolute reference frame is rotated in such a way as to have its Ox,
axis parallel to the (constant) direction of the magnetic field b. We then
choose

el(x)=ia ez(x) =j’ ‘ (49)

where 7 and j are the constant unit vectors along Ox, and Ox, in the absolute
frame. The arbitrariness of the orientation of these two vectors will not affect
the observable results.

The local reference frame is fixed once for all by the geometry of the
external field and is independent of the presence or absence of a particle in
space. We now introduce a third reference frame which is also local, but whose
orientation depends on the dynamics of the particle. Suppose the particle
passes at some time through the point x = g, with a velocity v. The latter is
decomposed into components parallel and perpendicular to b: v=v b+ v, .
We now choose a unit vector n, directed along v, , and a second unit vector
n, perpendicular to both v, and to b, such that

nAn,=b. (4.10)

We have thus defined a right-handed triad which (contrary to e, e,, b) is
determined by both the external field geometry and by the particle velocity:
we therefore call it the moving local reference frame (for want of a better
name). Let us call ¢ the angle between the fixed unit vector e; and the moving
unit vector n, (not n,!). A little trigonometry leads to the following relation
between moving and fixed unit vectors:

ni(q, )= —singe(g)—cos g ez(q),

n,(q, ¢) =cos ¢ e;(g) —sin ¢ e,(g). (4.11)
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Table 4.3
Particle variables ¢, vy, v, .

Definition
9=q. v=uvb(q)+v.m(q, 9)

Fundamental Lie brackets

(4> qj] =0, lq, U||] =m™'p, lg.v.] =m_1n1,
1 1
[q’q’]=_mvl"2’ [U||,U¢]=;"2'D» [Un»q’]:m_vl"l'l)’
eB 1
[vL,q:]———z—-— b-D. 1)

Jacobian (g, v) = (q, v, v, P)

J=v,. @
Hamiltonian

H=(m/2)(v}+01) + e(q). ®

Egquations of motion

g=vb+v,m, 4)
, e
v"=vln2'D+;b'E, (%)
e
0L=—an2-D+;n1-E, (6)
eB Uy e
b=~ +b-D— —n -D- -E. 7
§=5—+b-D L o "2 O]

Remarks
All fields @, E, B, b, n; are evaluated at x =¢q; V =9/dq,

DED(q’ U", U.L’q’)=vll(va)+U.L(vAnl)' (8)

We also note the following, very useful relations

an,(q, )
de

ani(q, )

a(p = _"Z(q’ q))’ =”l(q’ q)) (412)

We finally note that the construction described above leads to the following
expression for the velocity of the particle:

v=u,b(q) +v,mlg, ¢). (4.13)
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We now decide to use as phase space coordinates the variables
q,v,v, and eo.

The angle o is called the gyrophase. These variables are very similar to a set of
cylindrical coordinates for the velocity; but one should not forget that the
direction of the cylinder axis varies from one point to another.

Let us stress the following fact, which is an obvious property of these
“quasi-cylindrical” coordinates. As v b denotes the parallel velocity, which
may actually be parallel or antiparallel to the magnetic field, v, may be
positive or negative:

On the contrary, v, is the absolute value of the perpendicular velocity, and is
necessarily non-negative,

v, >0. , (4.15)

We treat (4.13) as a pseudo-canonical transformation of the type (2.24):
(g, v) > (g, v, v, , p) and go once more through the usual steps leading us to
the results of table 4.3. The calculation of the fundamental Lie brackets is a
little bit lengthy, but not difficult.

We have now derived a set of equations of motion for a set of physically
important quantities. In spite of their compactness, these equations are still
very complicated. We shall explore some simple cases in the next section.
These will give us a hint for finding new, approximate transformations which
simplify their solution. The three sets of variables considered in this section,
ie. (g, p), (g, v), (g, v, vy, ), will be called collectively particle variables,
because in each of them half of the variables are the coordinates q of the
particle.

1.5. Motion of a charged particle in simple electromagnetic fields

In order to gain insight into the problems of charged particle motion, we
briefly consider the simplest cases. First, we assume that there is no magnetic
field, B=0, and that the electric field is homogeneous, E(x) = E. In this case,
egs. (5) and (6) in table 4.2 reduce to

4(t) = (e/m)E. (5.1)
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In this trivially simple case, the solution represents a uniformly accelerated
motion of the particle, parallel or antiparallel to E (according to the sign of
¢). The solution is

q(t) =q°+ %t + L (e/m)Er?, (5.2)
where ¢° and ¢° are the initial position and velocity. The trajectory of the
particle is, in general, a parabola.

Next, we consider E =0, and a homogeneous magnetic field, B(x)=B. In
this case, the variables g, v, v, , ¢ are particularly convenient. The definition
of these variables is considerably simpler in the case of a homogeneous field.
Indeed, the orientation of the vector b being constant, the local reference
triad, e, e,, b of fig. 4.1 is everywhere parallel to the axes of the absolute
reference frame (4.9). As a result, the transformation (4.13) no longer mixes
the velocities and the positions; it reduces to

v=vb+v, n(p). (5.3)

The vectors n,, n, and b are independent of ¢q. The equations of motion
(4)—(7) in table 4.3 reduce to

d=v”b+vlnl(<p), 0,=0,
b, =0, =42, (5.4)

We introduced here the Larmor frequency 2 (sometimes called the cyclotron
frequency),

o=-<B (5.5)

mc

This quantity plays a basic role in plasma physics. Clearly, for a homogeneous
magnetic field, the Larmor frequency is constant. Note that 2 is positive or
negative, according to the sign of the charge.

Equations (5.4) have a number of simple properties; as a result, their
solution is straightforward.
— The length of the parallel and of the perpendicular velocity are separately
constant; thus

v (1) =v, v,(t)=v,. (5.6)
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~ The last equation is decoupled from the others, because § is constant.
Hence, the gyrophase varies linearly in time:

o(t)=¢" + Q1. (5.7)

— This result is substituted into the first equation, which is then easily
integrated, using (4.12),

q,(1) =q) + vy, (5.8)
ql(t)=q‘i+%[nz(<p°+9t)—nz(<p°)]. (5.9)

The motion parallel to B, determined by (5.8), is a uniform translation
along the field lines, with constant velocity v).

The function g , (¢) given by (5.9), is strictly periodic in time (remember eq.
4.11). Hence, eq. (5.9) describes the uniform rotation of the particle along a
circular trajectory of radius p,,

UJ.
= 5.10
centered at the point Y,
v
Y=q0——§—n2(q0, ¢°) (5.11)

This point, which depends only on the initial position and velocity of the
particle (and not on time) is called the guiding centre. p| is called the Larmor
radius: it is proportional to the transverse velocity, and inversely proportional
to the magnetic field intensity.

The combined motion takes place on a helical trajectory wound around a
magnetic line of force. In this case, the dynamical variables ¢, Vi, Vi @ have a
particularly simple geometrical interpretation, shown in fig. 5.1.

Let us define another quantity, which will play an important role in
forthcoming developments. Consider the projection of the trajectory on a
plane perpendicular to B (say, the plane x; = 0). This circle can be considered
formally as a current-carrying loop. The average current along the trajectory
can be defined as the amount of charge traversing per unit time an area Q
perpendicular to the trajectory (fig. 5.1):

I=8-2;.
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b

I
|
|
!

Fig. 5.1. Motion of a positively charged particle in a constant magnetic field. Note the absolute
reference frame (x,, x,, x3), the moving local triad (m,, n,, b), the guiding centre Y, the
gyrophase ¢, and the components v, v, of v.

As is well known, a current loop can be characterized by an associated
magnetic moment ., of magnitude p,

where S is the area of the loop. Using egs. (5.5) and (5.10), we get

_omv}
F=2B

(5.12)

When considered as a vector, this magnetic moment points in the direction
opposite to B, u = —pb. The Larmor loop can be considered as diamagnetic.
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Although these considerations are somewhat formal, it will be seen that the
magnetic moment p associated with the Larmor gyration plays a major role in
the forthcoming developments.

We now consider the motion of a particle in the simultaneous presence of a

magnetic field B and an electric field E, both homogeneous.
The combined equations of motion (5) and (6) in table 4.2 yield

e e
j=— —E. 5.13
§ mc(”AB)+mE (5.13)
The component of ¢ parallel to the magnetic field obeys
qg=y+ wgt, (5.15)

The perpendicular component obeys (5.13) with E, replacing E. In the
case of uniform fields, it is still possible to separate neatly the effects of the
electric and the magnetic fields. To this purpose, we make the change of
variables ¢ — y, which is a simple Galilean transformation to a frame moving
with a constant velocity wg (Sivukhin 1965),

q=y+wgt, (5.15)
where w; is taken perpendicular to the magnetic field,

wz*B=0. (5.16)
The perpendicular equation of motion becomes

5=~ (§AB)+-—(wgAB)+—E,. (5.17)
Clearly, if we choose wg such that

c Y wgAB)+E, =0 (5.18)
then (5.17) reduces to the equation of a particle in a magnetic field alone, i.e.
to the problem solved above. It follows that the complete motion (in the initial

reference frame) results from the superposition of the three “component”
motions, '

q(t)=q(1)b+y, (t)+ wgt. (5.19)
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The first term represents a uniformly accelerated motion in the direction of the
magnetic field (see 5.2),

q,(t) =g + v}t + 3 (e/m) E 1> (5.20)

The second term represents the Larmor gyration, described previously, around
a fixed guiding centre defined by (5.11),

(1]
y(1) =Y+ %nz(qf’ +0t). (5.21)

The third term represents the most “original” kind of motion appearing in this
problem; it is a uriform motion directed perpendicularly to both the electric
and the magnetic fields, with a constant velocity wg, derived from (5.18) and
(5.16),

wE=ECZ-(E/\B). (5.22)

This is called a drift motion and wg is the electric drift velocity. Let us
analyze in detail this important type of motion in the simple case where
qﬁ’ =0, uﬁ =0 and E =0, i.e. when the motion occurs in the plane g, = 0 (fig.
5.2). The combination of the last two terms in (5.19) can be pictured as a
distorted Larmor gyration around a guiding centre moving at velocity wg; the
resulting trajectory is a trochoid (or oblate cycloid). Its origin can be easily
understood in physical terms.

Consider a positively charged particle. In the absence of E, it gyrates
around a fixed centre in the direction abcd (fig. 5.2A). We now switch on the
field E and consider a particle starting at 4. As it moves downward under the
action of B, it is slowed down by E. The resulting distortion of the trajectory
can be understood as a gradual decrease of the instantaneous Larmor radius
(5.10), which reaches a minimum at b. On the second half of the journey, the
particle is pushed upwards by B and is accelerated by E, hence the local
radius of curvature increases back to its initial value. After a complete cycle,
the position of the particle is shifted to the right: this is the origin of the
electric drift.

A very remarkable feature of the electric drift is the fact that w; does not
depend on the charge of the particle. This paradox of an electric field acting in
the same way on positive and negative particles is, of course, only apparent.
The same qualitative analysis, applied to a negatively charged particle (which
gyrates in the opposite sense!), explains the effect (fig. 5.2B). We thus
emphasize the following important feature: Under the action of an electric field,
the negative and positive charges drift in the same direction.
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Fig. 5.2. Physical origin of the electric drift. (A) Positively charged particle, (B) negatively
charged particle.

We conclude this analysis with a word of caution. Equation (5.19) was
obtained by a correct solution of the equations of motion (5.13) and may be
considered as the exact solution of the problem, for any values of the fields B
and E. Nevertheless, it leads to unbearable physical paradoxes. The most
obvious is the following, We may try to naively take the limit B — 0, for fixed
E. The equation of motion (5.13) smoothly goes over into eq. (5.1); but the
solution (5.19) does not go over into (5.2). In particular, in the limit B — 0, the
drift velocity (5.22) becomes infinite! This very fact points towards the
explanation of the paradox: somewhere in the limiting process, we have
crossed the barrier of validity of classical mechanics and entered the realm of
relativistic mechanics, in which the equations of motion (5.13) are no longer
valid. A precise criterion of applicability of the equations is easily found. We
must guarantee that the absolute value of the drift velocity is much smaller
than the speed of light:

E . B

Wp= cKc¢
E
B2

which requires E, < B. We also have a criterion involving the parallel electric
field. Indeed, the increment in velocity over a Larmor period must also be
much smaller than c¢. From (5.20) we find -

1 E,

e
Av” = ;Ellﬁ = C—'B— <c
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which requires E, < B. Hence, in order for the equations (5.13) to possess
solutions which do not transgress their own limits of validity, i.e. classical
mechanics, we need the following condition on the absolute values of the
electric and magnetic fields:

E <B. (5.23)

Whenever this condition is not satisfied, one needs to use relativistic equations
of motion for treating the problem (Sivukhin 1965).

This discussion shows how “wild” the motion of a single charged particle
can be, even under the simplest imaginable conditions. Indeed, even constant
fields of infinitesimally small intensity can produce relativistically large veloci-
ties, provided E = B.

We now go over to the study of the more realistic situations where the fields
B(x) and E(x) are inhomogeneous. In this case, the equations of motion
(4)—(7) in table 4.3 become inextricably complicated, even in the simpler case
when E(x) = 0. Indeed, in the homogeneous case (5.4), the gyrophase ¢ obeys
an equation decoupled from all the other variables; it can be solved separately,
and its simple solution is used in order to solve the remaining equations. In the
general case, the right-hand sides of all the equations depend on the gyrophase
(through the vectors n,, n,, D) and represent therefore oscillating functions.
Such equations present considerable difficulties (see the discussion in section
1.6).

The results of the present section suggest the study of some situations which
are physically interesting and also mathematically tractable. Consider, for
instance, a case where E = 0, and the magnetic field is inhomogeneous, but
straight. Moreover, let its intensity depend on a single coordinate,

B(x)=B(x,) b.

In this case, the motion in the x,, x, plane can be understood by the
qualitative argument described above (fig. 5.3). As a positively charged particle
starts on its downward trip, it enters a region of higher field intensity. If the
variation of B is sufficiently slow, the trajectory will be only slightly distorted,
in a way similar to fig. 5.2: the Larmor radius (5.10) decreases along the
downward journey and increases along the upward one. The result is again a
drift motion, directed perpendicularly to both B and VB,

wog~ B A (VB). (5.24)

Applying the same argument to a negatively charged particle we find (fig.
5.3B) that the resulting drift is in the opposite direction. Thus, a gradient of
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Fig. 5.3. Drift due to the gradient of magnetic field intensity. (A) positively charged particle, (B)
negatively charged particle.

magnetic field intensity causes oppositely charged particles to drift in opposite
directions. We do not attempt to derive a precise expression of this drift
velocity at this stage. We also anticipate that this is not the only effect of the
field inhomogeneity: a systematic discussion will be given in the forthcoming
sections. This example only suggests that if the inhomogeneity is sufficiently
weak, its effect is a slow drift of the instantaneous guiding centre of the particle.
A weak inhomogeneity means, more precisely, that the scale length defined by
the magnetic field inhomogeneity

1 .
Ly = 5 !VB| (5.25)

is, on the average, much larger than the Larmor radius p; (5.10),
pL < Ly. (5.26)

Clearly, in the general case of an inhomogeneous magnetic field, we require
a more complete definition of a weak inhomogeneity, by asking that all the
characteristic lengths of the magnetic field be large, compared to the Larmor
radius. These characteristic lengths include the radius of curvature p (3.18)
and the radius of torsion (3.21).
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a b
Fig. 5.4. Exact (a) and smoothed (b) trajectories in a weakly inhomogeneous field.

One may expect, qualitatively, that in a general weakly inhomogeneous
situation, a typical particle trajectory looks schematically as in fig. 5.4a. The
particle gyrates very rapidly (with frequency £ ~ B) around a guiding centre,
which drifts slowly through space along a trajectory having none of the sharp
curbs of the Larmor gyration. It may happen that, for some problems (not
all!), we may disregard the rapid gyrations of the particles and be interested
only in the large-scale, smooth trajectory shown in fig. 5.4b. The particle
motion is then assimilated with its guiding centre motion: only if we “look
with a microscope” shall we see the fine structure of fig. 5.4a. This smoothed
picture is called the drift approximation. One may expect that, whenever it is
valid, it leads to a much simpler description of the motion. However, the
precise definition and use of this approximation is a subtle matter, which has
been a subject of research even in very recent years. It will be discussed in the
forthcoming sections.

1.6. The drift approximation: The method of the average

We now introduce a mathematical formulation of the drift approximation,
discussed qualitatively in the previous section. Although the simpler aspects
are clear and can be found in all elementary textbooks on plasma physics, the
precise formulation of the problem is a difficult and subtle matter.

We have seen that the idea of the drift approximation applies whenever the
Larmor radius is much smaller than the spatial scale of variation of the
external fields (5.25). Let us compare, for instance, the size of the first two
terms of eq. (7) in table 4.3 [recalling definition (8)],

oD~ (L 2
L, L)

eB

where L, and L}, are both characteristic lengths measuring the spatial scale
of the field and are introduced by Vv A b and by v A n,, respectively. When
the drift approximation applies (py << Ly, Ly), the first term clearly
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dominates. This fact can be expressed by a simple mathematical trick. A
scaling parameter is introduced by the replacement

B _o.1g (6.1)

mc €

in the dynamical equation of motion for ¢, eq. (7) in table 4.3. It is easily
checked that the resulting equations still derive from the Hamiltonian (3),
provided we make the same replacement in the Lie bracket [v, , @] of eq. (1).
The resulting set of equations is recopied in table 6.1 for easy reference. The
scaling parameter ¢ is a simple indicator of the order of magnitude of the
various terms.

The drift approximation is obtained, by definition, when ¢ is considered as a
small parameter,

e<x1. (6.2)

Let us stress the fact that, at the end of the calculations, the formal parameter
is given the value e =1, in order to restore the true physical quantities.

It is easily seen that the equations of motion (5)—(8) in table 6.1 can be
written collectively in the form

d
Txf =fk(xi9 (P), (63)
99 _1o(x) +alx 9), (6.4

where f,(x;, @) and a(x;, @) are periodic functions of .

Qualitatively, it may be said that, if ¢ is small enough, the motion resembles
the one pictured in figs. 5.2 and 5.3. The motion is nearly periodic, in the sense
that when the particle completes a gyration cycle, it “misses” its starting point
by a small amount; as a result, the guiding centre drifts slowly through space.

Thus, eq. (6.4) describes, to dominant order in €, a very rapid temporal
variation of ¢. But the more refined description is very complicated, because
of the dependence of the coefficients on the gyrophase. In order to grasp the
difficulty, we shall simply quote a passage from Kruskal’s (1962) basic paper,
whose clarity cannot be matched: “The gyration it depicts may be very uneven,
full of sudden accelerations and decelerations; since a(x;, ¢) may fluctuate wildly;
further, and in fact, more serious, the net rate of drift is not at all in evidence,
since in the course of gyration § may point in all directions, even quite opposite to
the direction that y is effectively drifting in”.
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Table 6.1
Scaled particle variablesq, v, v, , .

Definition
g=q, v=vb(q)+v.n(q, ¢).

Fundamental Lie brackets

[4: ‘Ij] =0 [4- U||] =m~'b, [¢,v.] =m_1"1y
1 _ 1
[4. 91=— o =n2,  [op, 0. ]=m7'n-D, [, 9] = —mi D,
1 2 1
[U.L’ (P]=_— - b-D. (1)

emv, mo,

Jacobian (g, )~ (q, V), V., 9)

J=v,. )]
Hamiltonian
H=(m/2)(v}+i2) +e®. €))

Egquations of motion

g=vb+v, ny, 4)

. e

by=v mp"D+ —b-E, (5)
e

O, ==uvmyD+ —"—lnl-E, (6)

1
o=2046D-Lp D n,-E. (7
€ v,

mv,

Remarks
All fields @, E, B, 2, b, n; are evaluated at x=¢; Vv =3/,

D=u(VAb)+v,(V Any). (®)

All these difficulties are due to the dependence of the coefficients on the
gyrophase. In order to cure these problems, we may try to realize a program,
which is most clearly stated by Kruskal (1962), whom we quote again: “We
therefore ask whether we can find an infinitely differentiable formal transforma-
tion to new variables which are similar to x; and ¢ and satisfy equations similar
to our egs. (6.3), (6.4), but without the odious dependence on the angle-like
variable — and not only to lowest order, but to all orders”. We shall see that the
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answer is yes”. The realization of this program has been the object of a large
amount of work.

Most treatments of the charged particle problem up to 1979 (e.g. Kruskal
1962, Northrop 1963, Gardner 1966, Northrop et al. 1966, Northrop and
Rome 1978, Hastie et al. 1967, Banos 1967, Sivukhin 1965, Morozov and
Soloviev 1966) are variations on the theme of the method of the average. The
idea of this method can be traced as far back as 1937 in the works by Krylov
and Bogoliubov on the asymptotic solutions of non-linear differential systems
(English transl.: Krylov and Bogoliubov (1947); see also the book by Bogo-
liubov and Mitropolsky (1962)). The idea of the method is clearly expressed in
the paper by Morozov and Soloviev (1966).

We replace the variables (x,, ¢) by a new set of “averaged variables™ (§,,
o) differing little from (x,, @) and satisfying differential equations which do not
contain the rapidly varying phase. We thus try to find a transformation

xe=E&c+egu(i, ) + '8, )+ oo, (6.5)

e=9¢+eq(§, ¢) + g (&, 9) + -0, \ (6.6)
such that

Lk Foel8) + eFul) + EBR(8) + - (67)

L= 208) +an(8) +emr(8) + - (63)

We illustrate the method of construction of the new equations only in the
simplest case, i.e. to zeroth order. Using eq. (6.5), we write

g1k -

0g
1k 50 é+0(e?)

3E,

Xk=£k+e §i+e

Using now egs. (6.7), (6.8) and noting that ¢ has a term in ¢~ ', we have

3
%= Fop+ —%Q+O(e). (6.9)

On the other hand, (6.3) yields

% =fi(x,, o) =fi(§+egy+ . pteq + - ) =fi (&, )+ O(‘)-
(6.10)
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Comparing the zeroth order terms in (6.9) and (6.10), we get

g1 (&, 9)

FIS Q&) =f(& 9)- (6.11)

Fo (&) +

We are still faced with the problem of suppressing the oscillations. To this
purpose we introduce an averaging operation, denoted by an overbar, appli-
cable to any periodic function of ¢:

G(¢) = %[02"&# G(&, ¢). (6.12)

By means of this operation, any periodic function can be represented as a sum
of an average term G and of an oscillating term G, whose average is zero,

G(¢,9)=G(&)+ G~(£i9 ). (6.13)

Returning to eq. (6.11), we note that there is still an element of arbitrari-
ness, which is suppressed by making a choice:

§1k(§i)=0, ql(gi)=0'
We then obtain from (6.5) and (6.6),
£ =X, +0(e?), o= +0(e?), (6.14)

together with the approximate equations of motion

E=7lE),  é=10(8). (6.15)

Clearly, the algorithm can be pursued systematically (Sivukhin 1965, Morozov
and Soloviev 1966), but we shall not go further here. We rather apply the
method to our specific problem, in order to bring out some interesting and
useful features.

For physical reasons suggested by the qualitative discussion in section 1.5,
the equation of motion for § is not expected to be simple, even after averaging.
All authors start by introducing ad hoc an instantaneous guiding centre, whose
coordinates are denoted here by y (rather than Y as in section 1.5) (see eq.
5.11),

y= q~cﬂv(q)nz(q, ?). (6.16)
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The exact equation of motion for y is easily obtained by applying the
Hamiltonian formalism in the variables of table 6.1:

y= [q—cfz%nz(q, ?), H]

€ 1 1
=v,b+ D—(v"vl —B-nz(b°V)B + vi—B-nz(nl *V)B

+03 A [(5+v)5]

+o0, {bA[(n - w)b] +n, A[(B-V)b]}

+vin A(ny - v)b] + v"vl(nz'v)b) + c—;—E/\ B.
(6.17)

All the fields n,, n,, b, B, 2 and E on the right-hand side of the above
equations are evaluated at the particle’s position x=g¢. We apply to this
complicated equation the method of the average, introducing the average
guiding centre position *

Y=7, (6.18)

whose equation of motion is obtained by averaging the right-hand side of
(6.17), according to (6.15). We note that the oscillating terms in this equation
are all of the form of products involving one or two of the unit vectors
n;(g, ¢). In order to calculate the average, we derive a set of interesting and
very useful properties of such expressions.

We recall that the unit vectors n,, n,, b form a complete right-handed triad
(4.10) at each point g. Therefore, they satisfy the closure relation

nn,+n,n,+bb=1, (6.19)

* At this point we see that the idea of “average variable” is ambiguous. y is considered as a
dynamical variable independent of the others, in particular of the gyrophase ¢; its average
according to (6.12) is therefore identical to itself! The correct interpretation of (6.18) is: “Y is the
variable obeying the equation of motion (6.17), averaged over the gyrophase”. Actually, the
average of y, in the context of the differential equations (6.3), should rather be interpreted as a
time-average (this is, indeed, the point of view of Sivukhin 1965). Its realization through a
gyrophase-average (6.12) is analogous to the ergodic hypothesis of statistical mechanics.
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where / is the unit tensor. The vectors n; are linear combinations of sin ¢ and
cos @, obeying eqs. (4.1), which also imply
aZ
?&nj: —nj, j=1,2. (620)
As a result, the average (6.12) of any one of these vectors is zero:

n(q, 9)=0. (6.21)

Likewise, the average of a product of any odd number of factors n; is zero.
For products of even numbers of factors n;, the situation is more complicated;
the calculation of their averages is made easy by an elegant formalism due to
Littlejohn (1981). Consider the four tensors

P0=ﬁ1n1 +n2n2, P1=n2n1_n1n2,
Q,=nn,+n,n;,, Q =nn —n,n,. (6.22)
Using egs. (4.12) we obtain

0
P

ag 0

aZ

Fa,,,: —40,,,, m=0, 1. (6.23)
P

Thus, the two tensors P, are independent of ¢, whereas the two tensors Q,,
are linear combinations of sin 2¢, cos 2¢ (second harmonics). We thus have

_Po =P, 7’1 =P,
Q,=0, Q,=0. » (6.24)
We note that egs. (6.22) can be inverted,
n1n1==}(P0+01), "2"2=’}(Po_01),
mn,=3(—P+Q), mn=3(P+Q). (6.25)
By means of these relations, any tensor, bilinear in n;, n,, can be uniquely

decomposed into an average part and an oscillating part, as in (6.13): the
averaging of such a tensor is thus elementary.
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In order to complete the picture, we derive several additional useful
identities. From (6.22) and (6.19), we immediately get

P,»A=A4—(b-A)b, (6.26)
where A is any vector inde;)endent of ¢. We now calculate
bAA=(nn +n,n,+bb)(bAA)
=n[n; < (bAA)] +n,(ny+(bAA))
=m[A-(n, AB)] +n,[4(n,Ab)]
=—nn,*A+nn +A="P A,

where we made use of (6.19), (4.10) and of some vector product identities.
Thus

P cA=b1A. (6.27)
Similar identities are |

P,:VA=V+A—b+VA-b, (6.28)

P :vVA=b+(V ANA). (6.29)

On the right-hand side of (6.28) we use an abbreviated notation which is very
convenient in suppressing cumbersome parentheses: we convene that the
operator V acts only on the factor written next to it (i.e. A).

To complete the list, we derive some properties of expressions involving
gradients of the vectors n;. These follow from the fact that the latter are
orthogonal unit vectors,

nn =n,°n,=1, ny°n,=0.
Hence (adding similar identities for b)

vn,*n,=Vn,'n,=vb-b=0 (6.30)
and

vn,n,=—vn,*n,. (6.31)
From (4.11) also follows that

R=vVn,*n,=Ve,"e,. (6.32)
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The vector R (which will appear later again) is thus independent of the
gyrophase *.Two additional identities are useful:

V- P=—b(V-b)—(b-V)b, (6.33)
VP =V Ab. (6.34)

We now come back to our initial problem: the averaging of eq. (6.17). As a
first step, we must express all the fields (b, n,, ,...,) on the right-hand side of
this equation in terms of the guiding centre position. Thus

b(g)=b(Y)+e=—<n,(Y, ¢)Vb(Y) +O(e?) (6.35)

Q(Y)

and similar expressions for the other fields. In the terms of (6.17), containing
¢, we may forget this correction, but in the zeroth order term we must express
vjlb(q) according to (§.35). We are now read){ for the averaging. Eliminating
right away the terms linear in n;, n,, we obtain

. c
Y=ub+e—(EnB)

1
ﬁ(vub/\(b V)b+lenzn1 VB+vin, A (n; - V)b)

(6.36)

where all fields are evaluated at x=Y and Vv =9/9Y. The first average is
easily calculated:

nyn ~vB=%1(P,+Q,)-vB=3}P,+VB=13bAVB.
The second average is a little bit more complicated. We first note
nA(n*V)b=ny[ny n A(n+v)b] +b[b-n A (n+v)b]
=n,(n, V)b (nyAn)+b(n+v)b+(bAny)
= —nyn,*Vbb+bn +Vben,=5b(n,n,):(Vh),

* It may help to note that this statement is not true for the combination n,-vn,!



48 Motion of a charged particle in an electromagnetic field [Ch1
where we used (6.19) and (4.10). Using now (6.25) and (6.29) we get
nA(n~v)b=3bP:vb=3%bb-(V AD).

Collecting these results, we find

. €
V= (0,4 55016+(V Ab))b

0
+eE—A§+e—'ibAvB+e3‘zle(b-v)b (6.37)
Y 20B Q ' :

Let us discuss this important equation, which provides us with the expres-
sion of the average drift velocity of the guiding centre, through order ¢. The
right-hand side contains a first term, representing the parallel motion (it will
be discussed afterwards) and three terms which are all perpendicular to b. The
first of these terms represents the familiar electric drift, which was found in
(5.22) for the uniform case. The second term represents the grad-B drift, and
was also found from a qualitative argument in (5.24): we now possess its exact
expression. The third term is a new effect, called centrifugal drift. In order to
understand its meaning (Sivukhin 1965), consider a magnetic field line and its
local Frenet triad at point x (fig. 6.1). In a curved field, the particle tends to
follow the field line (because its velocity has a component v). As a result, its
motion has a component which is a rotation around the instantaneous centre
of curvature C. The corresponding angular velocity vector w is such that

v=wAp=—pwAN, (6.38)

where IV is the unit vector along the principal normal and p is the curvature

il

Fig. 6.1. Origin of the centrifugal drift.
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radius. It follows that the angular velocity is directed along the binormal
(3.19):

I _o
o=-l(6AN)=—lp. (6.39)

The instantaneous motion of the particle may be referred to a reference
frame centered at the centre of curvature C. The relation between the velocity
v referred to the absolute frame and the velocity v, relative to the rotating
frame is

v=04+wAp. (6.40)
Hence, from (6.38),
U =0 - (641)

In this rotating frame the magnetic field is straight, but the frame is clearly
not inertial. Therefore, in writing the corresponding equations of motion, we
must take account of the well-known fictitious forces (see e.g. Landau and
Lifshitz 1957),

=f+2m(v, Aw)—mwA(wAp)—maéAp. (6.42)

The last term, involving &, can be shown to be of higher order. The Coriolis
force is easily evaluated:

Fo.=2mv, Ao=2m(vyN+vB) Aw

v
=2mvNN/\w=2mvN;“(N/\B) =2m— ]

b. (6.43)
Thus, the Coriolis force is parallel to the magnetic field, and therefore

produces no perpendicular drift. The centrifugal force is evaluated using
(6.39):

v
F,.=-moA(0Ap)=mwp= —m—%N (6.44)
This force is directed along the principal normal. It produces a drift which can
be evaluated from formula (5.22) by replacing the electric force eE by the
centrifugal force (6.44)

10
Fcent AB) = e——N Ab= 5 P”B (645)

C
cent 52_(
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Recalling the geometrical relations (3.18) and (3.19), we see that this drift
velocity, directed along the binormal of the field line, agrees precisely with the
last term of (6.37).

The interpretation of the “parallel drift velocity” leads to some serious
difficulties. The naive interpretation would tell us that the parallel velocity of
the guiding centre equals the parallel velocity of the particle. The occurrence
of a correction of order € is then surprising. Sivukhin (1965) interprets it by
trying to show that the average parallel guiding centre velocity equals the
average velocity of the particle, but his proof is not convincing *. It is very
striking to note that this “parallel drift” term has received different forms
(and values!) according to the various authors (see e.g. the lucid discussion by
Wimmel 1982).

When we address the higher order terms in the method of the average, and
in particular the averaged equations of motion for v, v, , ¢, the confusion in
the literature appears even more appalling. We shall therefore introduce in the
next sections a different, elegant and reliable method for treating the problem.

1.7. The drift approximation: The averaging pseudo-canonical
transformation.
1. Stationary, homogeneous fields

Besides its technical difficulties and ambiguities, the method of the average
has a more fundamental disadvantage. In this method, the main tool for
suppressing the “odious oscillations” is the gyrophase average (6.12) (or, even
more precisely, the average over rapid oscillations in time). This concept has
been introduced in the study of a differential system (6.3)-(6.4) containing a
small parameter. There is no objection to its use in finding asymptotic
solutions of such equations. However, in the problems to be studied in this
book, we must be more ambitious. We are not only — and even not primarily —
interested in finding detailed trajectories of a single charged particle. To us
this problem is just an introduction to the much more general problem of
setting up a description of a many-particle system - a plasma - with
interactions. For this purpose, we do not need a method of solution of a set of
differential equations; we rather need a deep insight into the structure of these
equations. A crucial fact in this respect is the Hamiltonian structure of the
starting equations (table 6.1). This property is exceedingly important for our

* He proves that v-b(¥)=(dY¥/d7) b(q), whereas the statement should be expressed as
v+b(g)=(d Y/dt)-b(¥), which is not true.
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final goal, because it ensures the validity of Liouville’s theorem. It thus allows
a correct transition from an individual-trajectory description to the phase-space
distribution function description, which opens the gate to statistical mecha-
nics, and thus to plasma physics.

It is clear, on the other hand, that the gyrophase average (6.12), and, a
fortiori, the time-smoothing concepts, do not seem to fit into the structure of
Hamiltonian dynamics, as exposed in section 1.2. A relation such as (6.18)
between the new variable ¥ and the old variable y involves, in principle, the
following steps:

(a) solve the differential system in order to obtain y(7);

(b) separate in-the solution two time scales, one fast, ¢;, and one slow, ¢,:
y(t) =y(tf’ ts)’

(c) average by integration over the fast time: ¥Y(¢,) = y(¢;, ¢,). This proce-
dure is markedly different from the canonical or pseudo-canonical transforma-
tions of the Hamiltonian formalism (2.24): these are functional relations
between the old and new variables, evaluated at the same time. In other
words, the pseudo-canonical transformations are point-transformations in
phase space, while the average relates the new variables to integrals over a
trajectory, i.e. a curve in phase space.

In conclusion, the application of the method of the average to the equations
of motion (5)—(8) in table 6.1 destroys their Hamiltonian structure. As a result,
an enormous amount of work done on the statistical physics and transport
theory of plasmas in an external magnetic field, in which the drift approxima-
tion plays a crucial role, appeared to have been constructed on a loose basis.
Indeed, the very first fundament: the Liouville equation, could not be proved,
and appeared as a kind of ad hoc construction. This is not a purely academic
problem. A non-Hamiltonian system may have very peculiar properties:
attractors, instabilities and even strange attractors. When one realizes the
importance of such phenomena in plasma physics, and the delicacy required in
their study, one must be sure at least that such properties have not been
introduced artificially *.

The history of the connection between the drift approximation and the
Hamiltonian dynamics is interesting. It is important to note that the first
paper dealing in full generality with the suppression of the fast oscillations in
the class of differential equations describing a nearly periodic motion is due to
Kruskal (1962). The recursive algorithm proposed in that paper for construct-

* This discussion should not be interpreted as our dismissing altogether all averaging
methods. We will see later in this book that averaging is an important tool in many fields of
plasma physics, and, in particular, in transport theory. But averages should be taken at the proper
time and on a physically sound basis. The point is that at this stage of the theory, when the very
starting point of the physical description is being constructed, one should avoid performing
uncontrollable operations.
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ing the averaging transformation is very close to the method of the average. In
his work, Kruskal proved a number of important properties of this averaging
transformation, one of which is of basic interest in the present context. He
proved that the Hamiltonian form is a hereditary property. More explicitly, if
the initial variables (x,, ¢) can be grouped in canonical pairs (g, p) and if the
differential system (6.3), (6.4) has the Hamiltonian form (2.2), the averaging
transformation can be constructed as a canonical transformation to a set of
variables (Q°, P°) (one of which is the gyrophase), such that their equations
of motion also have the Hamiltonian form. In his section devoted to ““Poisson
brackets”, Kruskal explicitly states the conditions (7.1) which will be used
below; thus Kruskal’s philosophy is very close to the idea of pseudo-canonical
transformations. However, his results are of the type of “existence theorems”,
which were not worked out explicitly. The application of his results in the
paper by Northrop et al. (1966) did not make use of Hamiltonian methods.

At that time, a large amount of work was devoted to a parallel line of
research, which is related to the present problem. This is the search for
adiabatic invariants of motion (which will be discussed in section 1.8) [see, e.g.
Alfven (1950), Chandrasekhar (1958), Gardner (1959), Bernstein (1971); a
good account of the early history of the problem is given by Kruskal (1962)}].
In this problem, an extensive use was made of Hamiltonian methods. But as
only “orthodox” canonical transformations were allowed, the authors were led
to use global geometrical characteristics of the field lines as canonical varia-
bles, which led to a rather impractical formalism.

The interest in these problems faded more or less away in the 1970’s, until a
breakthrough happened with the publication of Littlejohn’s (1979, 1981, 1983)
papers. In these papers, Kruskal’s statement was fully confirmed *: The drift
approximation fits perfectly in Hamiltonian dynamics. And, most important, the
theory was made fully operational.

Littlejohn’s results, while coinciding with the dominant order results of the
average method, went.beyond it and yielded, for the first time, a complete and
coherent description of the dynamics of a charged particle in the drift
approximation. These works have given a new impetus to the research in this
field.

One may wonder why such an important result had to await so long before
discovery. The reason, in our view, is clear. As long as Hamiltonian dynamics
was dominated by the “dogma” of canonical transformations, one could not
even think of approaching this problem: we have seen that even the use of the
physical velocity of a particle requires a non-canonical transformation. Only
when this psychological (rather than mathematical) barrier was lifted and one

* Strangely, Kruskal’s (1962) paper is quoted only in passing by Littlejohn (1981), and not in
connection with his fundamental theorem on the hereditary property of Hamiltonian structure.
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started using pseudo-canonical transformations in Hamiltonian dynamics, did
one gain enough flexibility for treating, in particular, the problem of the
guiding centre motion.

The fundamental result of Hamiltonian guiding centre motion theory may
be called:

The Kruskal—Littlejohn theorem.

Let z(k=1,...,6) be the set of particle phase-space coordinates
p

k= {q, O Vo (P}-

There exists a pseudo-canonical transformation to a new set of phase-space
coordinates Z* = (Y, U W, ¢},

Zk=2Z*(4,..., 2%, (7.1)

such that
— the Lie brackets of the new phase-space coordinates are all independent of the
new gyrophase ¢ = Z5:

[z*, z™]==*(2,..., Z°%); (7.2)
— the transformed Hamiltonian is independent of the new gyrophase ¢ = Z°,
H=H(Z,...,Z%). (7.3)
If this theorem holds, an immediate corollary is the following:

Whatever the form of the Hamiltonian, expressed in terms of the new
variables, the equations of motion are

Zk=[z*, H]=F*(2,..., Z%), (7.4)
where the functions F* are independent of the new gyrophase ¢ = Z°.

The goal formulated at the beginning of section 1.6, i.e. the elimination of
the “odious dependence” on the gyrophase is thus realized by a pseudo-canon-
ical transformation which preserves the Hamiltonian structure of the theory.
No use of a gyrophase-average (or, a fortiori, a time-average) operation 1s
necessary for achieving this purpose. The transformation {gq, v, v., ¢) =
{Y, U, W, ¢} will be called an averaging pseudo-canonical transformation; the
new variables will be called averaging (not “averaged”!) variables.
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The averaging pseudo-canonical transformation is not unique: there exist
infinitely many sets of variables possessing the required properties. Indeed,

Let Z¥ (k=1,...,6) be a known set of averaging variables, and consider the
following six functions of Z*:

22=2N2,...,2°%),
28=27%+¢(Z%,...,Z2%), A=1,...,5, (7.5)

(where we recall that Z% = ¢). It is easily checked that the variables 7', ..., Z°
also satisfy the requirements of the Kruskal-Littlejohn theorem:

[Z%, Zm)=3F(2",...,2%), k,m=1,...,6. (7.6)

Kruskal (1962) proved that conditions (7.5) are necessary and sufficient.

We now show, for a particularly simple example, how an averaging
pseudo-canonical transformation can be constructed. Consider a charged
particle in the presence of a homogeneous magnetic field B and a homoge-
neous electric field E. In this case, the fundamental Lie brackets (1) of table
6.1 reduce to

[4:.9,]1=0 [, v]=m~"8, [q,0.]=m"n (o),
lg, ¢]= _(mvl)—l’"Z(q))’ [Uu, v,]=0, [Uu, ¢] =0,

1.9
€

mo (7.7)

[ve, o]=-

All the right-hand sides are independent of ¢ in the present case, but two of
them are oscillating functions of ¢. The Hamiltonian is

H(q, v, vl)=%'m(uﬁ+vzl)—eE-q. (7.8)

We now seek a pseudo-canonical transformation, defined as a power series
in the small parameter ¢, and limit ourselves to the first order expansions

Y=q+ep(q, vy, v, , 9) +O(e?),
U=uv,+ev(q, vy, 01, @)+ O(e?),
W=uv, +ev,(q, v, v, @)+ O(?),

¢ =@ + ﬂP(‘I, U]l, V., (P) + 0(62)' (79)
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We want to determine the functions p, v, v, , ¥ in such a way that the Lie
brackets of the new variables be independent of ¢. As we know that the
averaging transformation, if it exists, is not unique, it is sufficient to determine
a particular set of such functions; it is not necessary to solve the forthcoming
equations in full generality (including all the integration constants). If one
particular set of averaging variables is found, egs. (7.5) enable us to construct
any other set of such variables. In particular, we shall try to impose an
additional, simplifying and aesthetically satisfactory condition: we want the
Hamiltonian to be form-invariant through order e:

H(Y, U, W) = m(U>+ W?) — cE- Y + O(¢?). (7.10)
From (7.10) and (7.9) we find that the condition of form-invariance requires
mow,+mv, v, —epE=0,
which is satisfied by taking

V”=U_LB(q’ Ups U1 ?),

e
mv

v, =—uv,B(q, v 0., 9)+ p-E, (7.11)

introducing the new unknown function 8. We now consider the seven Lie
brackets in turn, starting with those containing oscillating functions in the old
variables. Thus

e
mv,

(¥, W]=[q+cp, v, —ev,B+e p-E]

=[q, v.] +c([p, v, ]- [q, v”,B] + %[q, UIIP'E])
+¢2(—[p, v”,B] + %[p, vIlp-E]).

We now order these terms in powers of ¢ (remember that [v, , ] = O(e™")!):

= 9 _1 2 9dp
[Y’ W]_ [q’ U_L] +‘a¢[q), U_L] +0(‘)_ m”1+m_UL% +0(€)-

To order €°, the oscillations of n,(¢) are compensated if we take

dp v,
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to which could be added a vector independent of ¢ (but we do not need the
general solution!). From (4.12) we immediately find

p= —%—nz. (1.12)
Before checking the absence of oscillations to order ¢, we evaluate other Lie
brackets. The calculation of [Y, ¢] does not teach us anything new: we find
that the choice (7.12) also suppresses the oscillations of this bracket to order
¢®. We must now check that the correction p does not introduce any oscilla-
tions into brackets which were not oscillating in the old variables. In particular

a8 e a(P/U.L)

[W’ ¢]=[U.L,‘P]+€[U_L,(P]( U”a '—n‘E aU_L a(p

12 e/ @ a¢)

 emv,  mu, (”“aUL o

Here we must be careful: we require the suppression of the oscillations in the
Lie bracket expressed in terms of the new variables. As a result, we must
express v, in terms of W in the dominant (e!) term. This results in
additional, oscillating corrections of order €°,

. 6]= -+ & 20

W(l+c——,8+c B 2E) "L

__1e 2 (%g, 0B _c oy
B cm‘W+mv¢(vJ_'B+v”avJ_+vaJ_E "2("’)_37)

+0(e).

The oscillations introduced by n, in order €® are compensated by the
following simple choice

e
m§v

B=0, y=————n,-E. (7.13)

Equations (7.11)-(7.13) provide a complete solution to the problem; but we
must check that this particular solution is sufficient for suppressing the
oscillations in all the fundamental Lie brackets, not only to order €°, but also
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to order €. A direct calculation of these brackets shows that this is indeed the
case. We thus collect the results

v
Y=g Zna(p) +O(),
U= U"+ 0(62),

e
W=b, —cmE'nz((p) + O(€?),

6= 9= ot Eomi(9) + O(c%). (714)

Before continuing, we recognize that the new variable Y is nothing other
than the coordinate of the guiding centre (6.16), which entered the problem

quite naturally.
The fundamental Lie brackets are

[ i /] == ukbk’ [Y,U]= %b, [y, w]=
[¥. ¢]=0, [v.w]=0,  [U,¢]=0
(W, ¢]= _%?n%/ (7.15)

where ¢, is, as usual, the completely antlsymmetrlc Levi-Civita symbol.
These brackets are correct through order ¢ (e° for [W, ¢]). We clearly see that
they do not contain any oscillating function, hence (7.14) is, indeed, an

averaging pseudo-canonical transformation.
We finally derive the equations of motion from the Hamiltonian (7.10),

using the new brackets (7.15). For instance

Y,=[Y, Hl=m(U[Y,, U]+ W[Y,, W]) - e[Y,, V] E

¢
=Ub;+0+ c-Ee,-jkEjbk,

which can be rewritten as a vector equation,

E/\B

Y=Ub+ec (7.16)
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We similarly obtain

. e
U=_E*B, (7.17)
W=0, (7.18)
!

These are the equations of motion in the drift approximation through order
¢ (¢° for ¢), for homogeneous fields. Equation (7.16) describes the guiding
centre velocity as a superposition of a parallel velocity U (equal to the particle
velocity to this order) and a perpendicular drift velocity of order e. The latter
is the familiar electric drift velocity found previously (5.22). The guiding centre
is uniformly accelerated by the parallel component of the electric field.
Fiually, the new gyrophase still oscillates at the constant Larmor frequency 2.
We have thus obtained systematically all the previous results. We also note
that eq. (7.16) coincides exactly with eq. (6.37) for a homogeneous field. This
demonstrates that the method of the average and the pseudo-canonical aver-
aging transformation yield identical results in this case. We note, however, that
the explicit relations (7.14), as well as the additional equations of motion
(7.17)—(7.19) come out very simply in the latter method.

1.8. The drift approximation: The averaging pseudo-canonical
transformation.
11. Stationary, spatially inhomogeneous fields

Having illustrated in detail the Kruskal-Littlejohn theorem, i.e. the existence
of an averaging pseudo-canonical transformation, for the simple case of
homogeneous magnetic and electric fields, we go over to the case of arbitrarily
inhomogeneous, but still stationary, fields.

In this case, the magnetic field can be written in the form

B(x)=B(x) b(x). (8.1)

Hence, the intensity B(x) is spatially inhomogeneous, and the orientation of
the unit vector b(x) is also space-dependent. This means that the magnetic
field lines are curved and twisted. In spite of the additional mathematical
complication, it is essential to devise methods for treating this case. It is well
known that a straight magnetic field cannot confine a plasma. Hence all
thermonuclear fusion devices (in particular, the toroidal ones, such as the
tokamak) are based on cleverly designed, curved and twisted magnetic field
configurations. In the other important domain of application of plasma
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physics, it is clear to anyone who has looked at a picture of a solar flare, or of
the solar corona, or of the earth’s magnetosphere, that curvature and torsion
are universal features of magnetic fields in nature.

In order to treat this problem, Littlejohn, in his second paper (1981), uses a
“geometrical” method, based on an extension of a classical method of Ham-
iltonian dynamics: the Darboux transformation. Littlejohn’s method is not
simple, either from the basic point of view or for the calculations. In his third
paper Littlejohn (1983) introduced a different approach for treating the
problem. This new, “variational” method is of a Lagrangian, rather than a
Hamiltonian nature (although the connection with Hamiltonian dynamics is
made explicit at the end). This treatment is, pragmatically speaking, simpler,
but also mathematically less elegant, than the 1981 paper.

Recently, Weyssow and Balescu (1986) showed that the explicit construc-
tion of the Kruskal-Littlejohn averaging pseudocanonical transformation can
be done in a very direct and conceptually simple way. The idea is the
extension of the method illustrated in section 1.7 for the homogeneous case.
The new variables are written in the form of series expansions, like (7.9), and
the unknown functions are determined by satisfying conditions (7.2) to each
order. The terms of the transformation were determined through second order
in € (third order for Y), for general magnetic and electric fields, which may
also depend slowly on the time (see section 1.9).

It is impossible to expose here the detail of the calculations in the amount
of space available. We thus choose to expose and comment the main results,
through order ¢; these can be checked in various ways *.

The basic averaging pseudo-canonical transformation is defined by the
following equations:

!

€ €\2
Y=q—§vln2+ (5) v’
x(%b[nz-(v Am)+m (9 Amy)]

+ :—j(nzb +2bn,) (v Ab) - %("2"2 —n1n1)°VB)’ (82)

* We have already stressed the non-unicity of the averaging transformation. It turns out that
in the successive papers by Littlejohn, different versions of the averaging variables are given.
Unfortunately, there are also some misprints and some small internal inconsistencies in his papers
(especially in the one from 1983). Also, his use of artificial units with e = m = ¢ =1 is a little bit
irritating. The set of variables described here under the name of * natural guiding centre variables”
(to be distinguished from Littlejohn’s (1983) “standard guiding centre variables™) are close, but
not identical to those in his paper of 1981.
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U=v,+ %vi(%[nl-(v Anm) —n, (V Any)+2b+(V A D)

+ (v A b)), (8.3)

€

W=v, + Qv”vl(—%[m-(v An)—n, (V Any)+2b+(V Ab)]
o, °(V/\b)+v—l£n v
v, ! vy m ’
(8.4)
e Uﬁ
¢=¢+§(—n2-(vAb)—vlb-(vmz)
Ul
+3o[ny (Y An) +n«(V Any)| +0, B 'n - VB
+ nl-vcb). (8.5)
4

Here all the fields (2, B, ®, b, n,, n,) are evaluated at the point x = ¢q and at
phase ¢, and v = d/d q. These equations reduce to (7.14) for homogeneous
fields. The usual characteristics of the pseudo-canonical averaging transforma-
tion are collected in table 8.1.

The fundamental Lie brackets (1) in table 8.1 are clearly free from oscillat-
ing terms. Indeed, the oscillating functions n,(Y, ¢) enter these expressions
only through the combination R = ¥n, - n, which, as we know from (6.32), is
independent of the gyrophase ¢. Thus, (8.2-8.5) define indeed an averaging
pseudo-canonical transformation. We urge the reader to check some of the
fundamental Lie brackets of table 8.1; it is a non-trivial exercise in the
manipulation of the local basis vectors. He will see how exquisitely delicate are
the compensations of the oscillating terms, leading to egs. (1) *.

* The following remark is interesting. The results (8.2)-(8.5), given here through order ¢, are
insufficient for the complete calculation of some of the brackets through order € (e.g. [U, W],
[W, ¢], [U, ¢)). Indeed, as pointed out in section 1.7, the e-ordering of the brackets is not the
same as the e-ordering of the functions on which the bracket operates (this is due to the existence
of the “large” elementary bracket [v, , @] = O(e™1)). As a result, the calculation of some brackets
through order ¢ requires the knowledge of the dynamical variables Z* through order 2. The
€2-contributions were determined explicitly by Weyssow and Balescu (1986).
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Table 8.1
Natural guiding centre variables Y, U, W, ¢.

61

Definition  See eqs. (8.2)-(8.5)

Fundamental Lie brackets

(v, J]_— ,kak, [Y,U]=m 6%, [Y,W]=¢

W s
[Y, ¢]—€mb/\k, [U, W)= mb VB,

1
[U. ] =—=b""

1 2

w
(W, ¢]=- . mW+€m(VB)'(V Ab).

Jacobian (g, ©) = (Y, U, W, ¢)

|| = (Bi/B)W.
Hamiltonian

H=(m/2)(U*+ W?) +ed(Y).
Equations of motion

Y=Ub**,

___,* LT
U ZBb *VB mb vo,

. UW,.. W
-2 B-
W= 2Bb v €2B2

(v®)-(bAVB),

¢=€¢1Q+Ub-R—JUb-(V A D).

Remarks
All fields 2, B, &, b, b*, b** are evaluated at x=Y; v =9/0Y.

b*=b+ (e/QUbA (b°V)b,
b* b*+——[(mW/2B)b/\VB+8b/\V‘D]

B =B[1+(¢/2)Ub+(V AD)],

R=Vn,"n,=Ve, ¢e;.

_Ww_
2mBSR2

bAVB,

0

)

€)

O
(%)
(6
M

It is sometimes convenient to define a “modified magnetic field” B*,

B*=B+ %BU(V Ab).

(8.6)
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This quantity is useful in writing the equations in compact form and in
simplifying some proofs (as will be seen later). We note the property

v -B*=0. (8.7)

The modified field is used for constructing three auxiliary quantities. We first
define the scalar B as the projection of B* on the true magnetic field B,

€

B =B*-b=B(1+ 5

Ub(v /\b)). (8.8)

Next, we introduce the vector b*,
*

B €
*=——= —
b B? b+ ]

UbA(b+v)b. (8.9)
This form follows from the identity
VAb—bb-(VAb)Y=bA(b-V)b. (8.10)

We also define a vector b** as

2
LI S 1
b b +QmU( 2B b/\VB+eb/\V<P). (8.11)

We note that, through order .e, both »* and b** are unit vectors:
b*b*=b**-b**=b-b=1+ O(é?). (8.12)

The Jacobian (2) (table 8.1) has a very simple form in terms of B*. This
Jacobian is simply calculated from the matrix of the fundamental Lie brackets
by using relation (2.36). The reader may appreciate how much more cumber-
some would be the direct calculation of this Jacobian starting from egs.
(8.2)-(8.5).

Next, we note that the Hamiltonian is form-invariant:

H(q, v, v, ,9)= %m(vﬁ + vi) +ed(q)

S>H(Y,U W, ¢)=im(U*+ W?) +ed(Y) + O(?), (8.13)
We have seen in section 1.7 that this condition can be imposed as a limitation
on the choice of the averaging variables *. This condition introduces a

satisfactory symmetry between U and W.

* Littlejohn’s (1983) “standard guiding centre variables” do not have this property.
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The equations of motion have a quite compact form when written in terms
of the auxiliary field B*. However, their physical analysis is clearer on the
expanded forms, which are written here through the highest significant order,
i.e. order € for Y, U, W and order €° for ¢:

Y=Ub+% (;VB)b/\vB+U2bA(b v)b+ = E/\b (8.14)
T _ W2 W2
U=-38 ( 2B _eE)’
(8.15)
oUW
W= b vB+§ﬁ(U [bA (b v)b]——(bAE))
(8.16)
q'>=%9+ Ub-R—3Ub+(V Ab). (8.17)

Equation (8.14) is particularly clear, when compared to (6.37), which was
obtained by the method of the average. We see that the perpendicular drift
velocity is identical in the two equations (to order e¢). We recognize the
familiar electric drift, the grad-B drift and the centrifugal drift discussed in
sections 1.5 and 1.6. But the definition of the parallel motion is now much
clearer. Indeed, (8.14) implies that U is simply the parallel component of the
guiding centre velocity. It differs from the corresponding term in (6.37), as can
be seen from the definition of U, eq. (8.3). This clearly settles the question of
the “parallel drift” which was an object of polemics in the older literature (see
Wimmel 1982).

Equation (8.15) defines the parallel acceleration, which is due not only to
the parallel component of the electric field as in the homogeneous case (7.17),
but also to the gradient of B and to centrifugal effects. The motion of the
“true” gyrophase ¢ is modified by terms of order e, due to curvature effects,
as appears from (8.17). A discussion of these effects can be found in the paper
by Littlejohn (1981). The variable W does not have a direct simple interpreta-
tion: its meaning will become clearer after the forthcoming discussion.

At the beginning of section 1.7 it was shown that the pseudocanonical
averaging transformation is not unique. Having found one set Z* of averaging
variables (such as Y, U, W, ¢), any set of functions Z* of these variables,
defined by (7.5), is again a set of averaging variables (i.e. it has non-oscillating
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fundamental Lie brackets). Among all possible sets of such variables, we
define two classes which have a clear physical meaning.

First, we may transform the coordinates Y;, Y,, Y; among themselves,
leaving U, W, ¢ unchanged:

Y/ =Y/(}, 1), Y3). (8.18)

This corresponds to transforming the Cartesian coordinates to some other
coordinate system for the description of the guiding centre position. Such
transformations are very important in the study of toroidal confinement
systems (see chapters 9, 14 and 16).

On the other hand, the variables U, W may be replaced by new functions
P,, P,of Y (or Y'), U and W, leaving Y (or Y’) unchanged.

We will call guiding centre variables any set of averaging variables
(Y, P,, P,, ¢) for which Y are the (Cartesian or non-Cartesian) coordinates of
the guiding centre. Among all sets of guiding centre variables, a convenient
subset is the one which leaves the Hamiltonian form-invariant, as in (8.13). In
the general case of variables (P,, P,) # (U, W), this property is defined by
requiring the Hamiltonian, expressed in terms of the new variables, to contain
no term of order e¢. Guiding centre variables which leave the Hamiltonian
form-invariant will be called Natural Guiding Centre variables, or briefly,
NGC-variables.

Among the possible variables describing a mechanical system, a particular
relevance attaches to the invariants of motion, both for their physical impor-
tance, and for the simplifications they introduce in the description. One of
these invariants is obvious: it is the total energy of the particle,

E=Im(U*+ W?) +ed(Y). (8.19)

Less obvious, but equally important is the following quantity, which will be
called the magnetic moment:

M=

) 3

B)" (8.20)

&

Clearly, for € — 0, the quantity reduces to the magnetic moment p of the
particle, defined in (5.12). The invariance of M is easily proved by using egs.
(1) and (3) in table 8.1:

M=[M, H] =0+ O(é?). (8.21)
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This property helps interpreting the variable W through its relation to the
invariant M,

W=+ /ImB(Y) M. (8.22)

Let us stress the fact that in this inversion of (8.20), the sign of the square root
is necessarily positive. This is because W must tend continuously towards the
non-negative variable v, as € — 0 (see 4.15).

We emphasize the fact that the two invariants & and M do not have the
same status. The energy is an absolute invariant, i.e. an invariant of the exact
equations of motion in table 6.1,

[3m(v}+02) +ed(g). H(q, v, v.)] =0. (8.23)

On the contrary, the magnetic moment is not an invariant of the exact
equations of motion. From table 6.1 we find

h= [23”(:1) vi- Hig. oy ”*)]

mvz

e L
zm_(_vn"Z’D_Z"l’Vq)) 2F(Unb+”¢"1)'vB' (8.24)

We see that p is a constant of the motion when B is homogeneous and there is
no electric field. The question arises whether this invariant can be extended
into a new quantity which remains invariant when the magnetic field and the
electric potential vary slowly. If such a quantity exists, it is called an adiabatic
invariant of motion. The result (8.21) shows that the averaging pseudo-canoni-
cal transformation realizes precisely this continuation of the magnetic moment
p into an adiabatic invariant M, to order e.

Let us clarify this important point. Suppose we have constructed explicitly
the averaging transformation to one higher order, i.e. the Lie brackets of the
extended variables are free from oscillations through order €. It is then
possible to extend the definition of the magnetic moment invariant M (by
adding an e*-correction) in order to achieve the relation M =0 + O(¢>). The
existence of the magnetic moment invariant, constant to all orders in ¢ was
proved mathematically by Kruskal (1957) [but its explicit form is known only
through order €*: Gardner (1966) for an axisymmetric field geometry and
E = 0; Weyssow and Balescu (1986) for the general case].
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The quantities & and M are quite convenient for constructing new sets of
NGC-variables. An interesting variable, that will prove quite useful in the
neoclassical transport theory, is the kinetic energy K,

K=&-e®(Y). (8.25)
Table 8.2
Natural guiding centre variables Y, U, M, ¢.
Definition
M-
2 B(Y)

Fundamental Lie brackets

Y, Y]= e—e,kbk, Y, U]l=m 1p*, Y, M]=0,
! i

v, 4,]=emiﬂb/\k, (U, M]=0.

(v, ¢]=—%b"-R [M,¢]=—%%~ | M
Jacobian (g, v) > (Y, U, M, ¢)

|J]=m"'Bp. @
Hamiltonian

H=(m/2)U?+ MB(Y)+ e®(Y). 3)
Egquations of motion

Y=Ub**, @)

J= —m~1p** + 7 (MB + e®), ®

M=o, ' (6)

$=12+ Ub-R—1UB-(v A D). ()

Remarks
All fields 2, B, @, b, b*, b** are evaluated at x=Y; v =9 /3Y,

b*=b+(e/Q)UbA(b-V)b,
sx_pey € 1

b b +9mUbAv(MB+ed>),
B =B[1+(¢/Q)Ub-(v Ab)],

R=vn,°n;=Ve, e,.
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Table 8.3
Natural guiding centre variables ¥, &, M, ¢.
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Definition
&=(m/2) (U + W?) +ed(Y), M=[mW?/2B(Y)].
Fundamental Lie brackets
1
(%, Y]=—e—seube, [V, €]=Ub**,  [¥, M]=0
1 .
[y, 4>]=c;n-—§(b/\R), [£, M]=0,

. 19
[€,¢)=—¢'2—Ub-R+;Ub~(V AD), [M, ¢]l=-_%.

Jacobian (g, v) =~ (Y, &, M, ¢)

B
S
Hamiltonian
H=8.

Equations of motion
Y=Ub**,
£=0,
M=0,
¢=¢ 10+ Ub-R—JUb-(V AD).

Remarks
All fields 2, B, @, Bf, b, b** ar¢ evaluated at x=Y: V = 9/0Y,

U=a‘/(2/m)(¢8"~ed>—MB), o=1,
sr_pe £ L
b _b+§mU
B =B[1+(¢/Q)Ub+(V AD)],

bA[mU*(b-V)b+V(MB+e®)],

R=Vny-n,=Ve,-e,.

€))

)

®

O
®
(6)
Q)

Among the possible combinations of these NGC variables, the following ones

are particularly useful in practice:

{Y, Uy M, ¢}’ {Y, éay M, ¢}’ {Y, K, M, ¢}



68 Motion of a charged particle in an electromagnetic field [Ch.1

Table 8.4
Natural guiding centre variables Y, K, M, ¢.

Definition
K=(m/2)U*+w?), M=[mw?/2B(Y)].

Fundamental Lie brackets

1
Y. )= - ceube, (Y, K]=Ub**, [¥,M]=0

(V. ¢]=c=(bAR),  [K, M]=0,
[K,9]=~e'2-Ub-R+3Ub-(v AD), [M, ¢]=—%%. )
Jacobian (g, v) > (Y, K, M, ¢)
= @
m-|U|
Hamiltonian
H=K+e®(Y). ©)
Equations of motion
YU, )
K=eUb**-E, %)
M=0, (6)
¢=€¢1Q+Ub*R—3Ub-(V A D). @)

Remarks
All fields 2, B, &, Bﬁ‘, b, b** are evaluated at x=Y; v =93 /93Y,

U=o,/(2/m){K—-MB}, o=+4,

wopy £ L 2(p.
b b+9mUb/\[mU (b-9V)b+V(MB+ed)],

By =B[1+(e/Q2)Ub~(V Ab)],

R=Yn *n,=Ve;"e;.

The relevant properties of these NGC-variables are collected in tables 8.2-8.4.

The choise {Y, &, M, ¢} is, of course, the one which leads to the simplest
equations of motion: two of these reduce to triviality. We may note the
following important point. Whenever this set is used, the parallel guiding
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centre velocity U must be understood as a function of the basic NGC-varia-
bles, defined from (8.19) and (8.20),

U=sU(Y, & M)=0/2/m)[6—e®(Y)-MB(Y)], o

+.

(8.26)

Contrary to W, (8.22), the quantity U may be positive or negative (see 4.14).
The sign factor 6 = +1 in this equation is therefore important in the inversion
of (8.19), and its correct determination must always be considered carefully, as
will be seen in forthcoming applications (see, €.g. chapter 9 and 14).

1.9. The drift approximation: The averaging pseudo-canonical
transformation.
II1. Slowly time-dependent, inhomogeneous fields

We now lift the restriction made in the previous sections and allow for a time
dependence of the magnetic and electric fields. It is, indeed, important to
develop tools for treating these non-autonomous systems, not only for aestheti-
cal reasons. In most realistic cases of interest in fusion physics, as well as in
astrophysics, the electromagnetic fields interacting with the plasma are time-
dependent. In one class of problems, the time-dependence is “fast” (compared
to appropriate standards). Examples are the problems of plasmas interacting
with electromagnetic waves (such as laser beams) or with high-frequency
collective modes produced inside the plasma itself. These problems will not be
considered in the present volume, as they are typically relevant for the
“anomalous” transport. Here, we shall limit ourselves to the case where the
time-dependence of the external fields is “slow”. The problem then becomes a
natural extension of the drift approximation: the temporal rate of change of
the fields is measured by some power of the drift parameter € *.

The dynamics of systems with time-dependent external parameters can be
cast into the same Hamiltonian formalism as described in section 1.2, by using
the known formal procedure (Goldstein 1980, Kruskal 1962, Littlejohn 1981)

* It may be mentioned here that the method of pseudo-canonical averaging transformations
can also be applied to the motion of a charged particle in presence of a high frequency
electromagnetic field. The goal to be reached is to find “oscillation centre” coordinates whose
equations of motion do not contain the fast oscillations induced by the external field. This leads to
the well-known problem of the “ponderomotive effects” (Weyssow and Balescu 1987). If a strong
quasi-static magnetic field is also present, a pseudo-canonical transformation can be constructed,
that averages out borh the fast external frequency and the fast gyration (Weyssow and Balescu
1988). (Additional references will be found in these two papers.)
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of the extended phase space. It consists of considering the time t as a dynamical
variable (rather than as an external parameter as in section 1.2), and adjoining
to it a canonically conjugate variable 4, which is none other than the total
energy (up to the sign). Thus, the phase space of a single particle is now an
eight-dimensional space, spanned by the coordinates (¢;, 43, 43, ¢ P1, Pa» P3»
h). We stress the fact that these variables must be treated mathematically as
independent (although physically they are not!).

The dynamical algebra is determined by the specification of the table of
fundamental Lie brackets, which extends egs. (1) in table 4.1:

[4: ‘Ij]=0’ [ 2 Pj]=0, (4. pj]=8ij,
[t’ qi]=0’ [t’ Pi]=0’ [h’ qi]=0,
[h’ pi]=0’ [t’ h]=1- (91)

The motion is now parametrized by an abstract “proper.time” 7. In the
forthcoming formulae, the usual overdot notation must be understood as

da(7)
dr ~

a

_ The equations of motion are governed by an “extended Hamiltonian”
HQ@g, p, t, h), which is simply related to the ordinary Hamiltonian (4.3)
(which now involves time-dependent potentials),

~ 1 2
Hig,p.t, )=H+h=5-p-24(g,1)| +ed(g, ) +h. (92)

The equations of motion for the non-autonomous system then take the
same form as eq. (2.19),

d=—=[a, H], (9.3)

where a is any dynamical function of ¢, p, ¢, A. From here on, the formalism
of Hamiltonian mechanics proceeds in exactly the same form as for au-
tonomous systems. The only problem left is a problem of interpretation of the
final results. Some procedure must be devised for the elimination; in the final
stage, of the artificially added variables r and 4. This aspect will be postponed
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to section 2.3 *, where it will be shown how the physically relevant quantities
can be expressed in terms of physical variables alone.

We now perform a first pseudo-canonical transformation from the canoni-
cal momentum p to the velocity v, as in table 4.2; (¢, p, t, h) > (q, v, t, h).
The following additional Lie brackets must be adjoined to those of table 4.2:

[4:, t]=0, [g;, k]1=0, [v;, t]=0.

e 04,

[, h]= - mc 0t

, [t n]=1. (9.4)

The transformed Hamiltonian is
H(g, v, t, h)=3mv* +ed(q, t) +h (9.5)

and the equations of motion are

- b & _L 1
g=v, o= mc(v/\B) m(vd§+ ca,A),

h=§o-a,A—ea,d>, i=1. (9.6)

We note that the two first equations are actually identical to egs. (5) and (6)
in table 4.2. Indeed, we recall that the electric field in the non-stationary case is
given by

1
E(q, t)= -V (g, 1) - <3,4(q, ). (5.7)
We now go over to the local cylindrical velocity variables,

v=uv,b(q, 1) +v,nq, o, 1), (9.8)

where the moving local reference frame b, n,, n, is defined as in (4.11), but
with time-dependent unit vectors e,(g, t), e,(g, t). There is a constraint on the
time-dependence of these vectors, which comes from the requirement that, at
all times, they be a set of mutually orthogonal unit vectors; thus

b*(q, t) =1, b(q,1)-e(q,t)=0, etc., forall ¢.
Hence

b-9,b=0, bede +e +9b=0, etc.

* Whenever reference is made to a section, equation, figure or table in another chapter, the
number is preceded by the chapter number in boldface type.
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Using these relations, the new fundamental Lie brackets and equations of
motion are easily worked out.

We now make the basic scaling assumption, generalizing eq. (6.1). The latter
equation is maintained in the mathematically equivalent form (used by Gardner
1966 and by Littlejohn 1981)

e—»%e, B—>¢°B (9.9)

which must be combined with the assumption

P-ed (9.10)
in order to keep the term e® in the Hamiltonian of zeroth order. In order to
choose a reasonable scaling for the rates of change in time, we consider
specifically the situation arising in a toroidal confinement system, such as the
tokamak (see chapter 8). It appears that in such a configuration, the non-
potential part of the electric field (i.e. the second term in eq. (9.7) is of order ¢

compared to the potential part (Hinton and Hazeltine 1976). In order to scale
the terms in agreement with this fact, we assume

3,4 > €3 A,

3,b > €29,b,

dn, > €*d,n,,

30>, i=1,2. (9.11)

The set of fundamental Lie brackets is now easily derived. The “old” brackets
are the same as in table 6.1 (but, of course, with all the fields depending on
time); to these must be added the following brackets, in which we only keep
terms through order e:

lg. t1=0, [o,,7]=0, [v,,t]=0, [o,t]=0,

e e
[g.. K1=0, [ov, k] = —e—b-3,d, [v,, ] = —e——n 0,4,

[, h] =€ n,*9,4, [t, h]=1. T (9.12)

mev |
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The extended Hamiltonian is
ﬁ=§m(vﬁ+vi)+e<b(q, t)+h (9.13)
and the equations of motion are

g=vb+o ny,

e e
3 = . — —p- 45_. —b-d A
U” v, ny D bV € Cb at N

v, = -—uvny*D— -r%an@—c—r-n%nl'B,A,

¢ = -:—52+b-D~ —:l—]nl'D+ mzl nz-vc1>+em:0l ny-d,A,
h=c§(v”b-8,A +v,.n+3,A4),

i=1. (9.14)

From here on, we shall proceed, as in sections 1.7 and 1.8, to the construc-
tion of an averaging pseudo-canonical transformation. Let us call Z* A=
1,...,8, the extended phase-space variables, with the conventions 75 = ?,
Z7 =k, Z®=1'. The extended Kruskal-Littlejohn theorem can be formulated
as follows.

There exists a pseudo-canonical transformation from the particle variables A
to a set of a new phase-space variables Z>, such that all the fundamental Lie
brackets of the new variables 3™ =[Z*, Z*] are independent of Z° = ¢.

The proof is a constructive one. We write
Z~>‘=5>‘+é[§‘3‘(2‘“)+§% )] +0(e?), (9.15)

where {) defines the pseudo-canonical transformation in the time-independent
case, and the functions ¢ % are the additional terms to be added when the fields
are non-stationary. Thus, {} are defined by eqs. (8.2)-(8.5) for A=1,...,6,
and {J = ¢§ = 0. The functions ¢} are determined in such a way as to annul all
the gyrophase-dependent terms in the Lie brackets of the new variables. We
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omit again the detailed calculations and quote directly the final result through
order € *, choosing the most useful set of NGC-variables, Y, &, M, ¢, k, t/,

€
Y=q_ ﬁvJ."b

&= %m(vﬁ +vf_) +ed,

/
X\vﬁvJ_m'(V Ab)

- %v”vﬁ_[nz-(v Any) —n (v An) —2b+(V Ab)]

3

v e
- ﬁngVB— ;vJ_an(D),

2
D

o=+ Thmae (v AD) = 0,8+(7 A
Uy

+ 3ol (v An) +n,«(V Any)| +v, B 'y VB

+

n1°V¢),

U,
k=h, t'=t¢. (9.16)

We note that, through order e, all the coefficients {3 are null. Expressions
(9.16) of the NGC-variables coincide with those derived from (8.2)—(8.5).

The extended Hamiltonian has the very simple form
H=86+k. (9.17)

As usual, we collect the fundamental Lie brackets, the Jacobian and the
equations of motion in table 9.1. All these results are correct through order e
(€° for the brackets involving ¢ and for ¢). We note that, due to the ordering
(9-11), the results are very simple. The only modified equations of motion are

* The terms of order ¢> were obtained by Weyssow and Balescu (1986).
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Table 9.1
Natural guiding centre variables ¥, &, M, ¢, k, t.
Definition
See egs. (9.16).
Fundamental Lie brackets
[Y,.,};.]=—eﬁe,.jkbk, [Y,&]=Ub**, [Y, M]=0,
[¥. o] =e==b AR, [¥, k] =0, [¥, 1] =0,
[, M]=0, [, ¢]=—€¢'Q— Ub*R+3Ub-(V Ab),
[a,k]=‘—¢§Ub-a,A, (&, t]=0, [M, k] =0,
(M, 0]= 22, (M, ]=0, [¢, k] =0,
[, 1]=0, [k, t]=—1. 1)
Jacobian (q, v, h, 1) > (Y, €, M, ¢, k, t)
*
1= @
Hamiltonian
HA=6+k (3)
Equations of motion
Y= Ub**, 4)
é=~e(e/c)Ub-3,4, &)
M=0, Q)
6=¢ 2+ Ub-R—7Ub-(V AD), @)
k=e(e/c)Ub 3,4, ®
i=1. ®
Remarks

All fields 2, B, ®, A4, b, b**, B} are evaluated at x=Y; v =3/3Y,

U=o‘/(2/m)(€—e¢—MB), o=1,

b“=b+mb/\[mUz(b-V)b+MvB+eV¢],

Bif = B[1+ (/2)Ub~(V AB)],

R=9Yn,*n;=Ve;‘e,.
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those for & and k. Indeed, the energy is no longer a constant of the motion in a
time-dependent external field. It is important to emphasize, however, that the
magnetic moment M is still an adiabatic invariant of the motion. Next, we note
that the right-hand sides of the equations for € and k are identical (up to the
sign): this is consistent with the fact that the “artificial” phase-space variable
k must be physically identified with (minus) the energy. Also, the equation of
motion /=1 allows the physical identification of ¢ with the “proper time” 7.
Some care must, however, be taken in the expression of this final identifica-
tion, as will be shown in section 2.3.

With these results we have completed the purely mechanical study of the
motion of a single particle in a general, weakly inhomogeneous, slowly varying
electromagnetic field. We shall come back to this problem in chapter 9, where
the present general results will be applied to the motion of a particle in a
specific, toroidal geometry of the magnetic field.

The next chapter is devoted to the passage from the individual particle
picture to the picture of a plasma, considered as a system of many charged
particles, interacting with each other.
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2

The microscopic description of a plasma

2.1. Statistical description of a plasma

Having discussed at length the dynamics of a single particle, we now turn our
attention to a system of N particles, where N is a very large number
(N =10?%), It is well known that very large systems cannot be treated by the
methods of ordinary mechanics: we enter the realm of statistical mechanics. It
is, of course, out of the question to develop in the present book the details of
statistical mechanics and kinetic theory. Many books on this subject exist on
the market (e.g. Balescu 1963, 1975, Klimontovich 1964, 1982, Akhiezer and
Peletminskii 1981, Lifshitz and Pitaevskii 1981). We assume the reader to be
familiar with the elements of statistical physics; we shall provide, however, a
sketchy derivation of the main results.

In the present section we shall fix the definition of a quiescent plasma to be
used in this book and discuss the general framework of the theory. A
definition is necessarily a limitation of a vast subject. Our purpose is to
concentrate on the role of the electromagnetic interactions of charged particles
among themselves and/ or with external fields. We therefore restrict ourselves
to the study of fully ionized plasmas. This, of course, excludes a number of
very interesting phenomena, which are quite important in partially ionized
plasmas. The latter contain a fraction of neutral molecules and/or atoms,
which may undergo a number of transformations under the action of collisions
or of the external field. The study of such processes as excitation or deexcita-
tion, ionization or recombination of the atoms or ions requires, beyond the
methods of kinetic theory, the “full artillery” of atomic physics. The problem
becomes very difficult on the level of a minimally rigorous theory.

We define a (fully ionized) plasma as a collection of electrons and of
positively charged ions.

The nature of the ions can be quite variable. In plasmas of thermonuclear
interest, as well as in many astrophysical applications, the ions are nuclei of
hydrogen, H™, or of its heavy isotopes, deuterium D*, or tritium T*. Many
experiments are, however, performed with metals (gold, aluminum, iron,
cesium, ...) which are present in the final plasma in various states of ioniza-
tion; in a magnetically confined plasma there always exists a more or less

79
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important fraction of heavy ion impurities originating from the walls. These
examples show that in a detailed description of a fully ionized plasma, one
should take into account the presence of a number of different ion species. For
simplicity, we shall discuss in this book only such plasmas in which we either
have a single species of ions, or in . which we can model the real mixture by a
single “effective” ion species. A few remarks and references for the problem of
multispecies plasmas will be given in chapter 16.

As a consequence of our limitation to fully ionized plasmas (hence of
exclusion of internal atomic processes), we may idealize both the electrons and
the ions as point particles, subject to the laws of classical (i.e. non-quantum)
mechanics and electrodynamics. Their microscopic nature is thus fully char-
acterized by two parameters: their mass and their charge.

We now fix some conventions of notation. Quantities relevant to particles
of a given species will be labelled by a greek index taken at the beginning of
the alphabet, most usually: a, 8, v,... (it may appear either as a subscript or
as a superscript). This index may take two values: a = e for the electrons and
a = i for the ions. We thus denote by m,, the mass of the particles of species a,
and by e, their charge. More specifically, if we call e the absolute value of the
charge of the electron (a fundamental physical constant), we have

e.=—e, e=+2Ze, (1.1)

where Z is the charge number of the ions. Throughout this book we use
Gaussian (cgs-) units, which are more natural in problems of microscopic
physics.

Concerning masses, an important fact must already be noted. A characteris-
tic feature of all the electron—ion plasmas is the very large disparity of the
masses of the ions and of the electrons. Even in the extreme case of a
hydrogen plasma, the electron-to-ion mass ratio is approximately 1/1836 =
5.45 x 10™*. The smallness of this ratio will be systematically used in order to
simplify the expressions. We thus assume that '

me

and we consistently neglect quantities that are of order p (but not, for
example, quantities of order u'/?).

We denote the total number of particles of species a by the symbol N,. In a
fully ionized plasma, i.e. in the absence of ionization and recombination
processes, these numbers are constant in time for each species. Among these
numbers exists a relation, expressing that the plasma is globally neutral, i.e. the
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total negative charge of the electrons exactly compensates the total positive
charge of the ions,

N,=ZN,. (1.3)

(This does not preclude the possibility of local deviations from electroneutral-
ity, which will be discussed in section 4.1). We also introduce the notation N
for the total number of particles,

N=YN,. (1.4)

Let the index j characterize a given particle (electron or ion) with a range
of values 1, 2,..., N. Let the vector ¢, denote the coordinate (or position) of
particle j, and the vector p; represent its canonical momentum. The set of
quantities (¢;,--.,qy, P1,---> Pn) determines a point in a 6N-dimensional
space, called the phase space of the dynamical system. We shall often use the
abbreviation

(¢1,---»qn> P1s--- Pn)=(q, P). (1.5)

Let also H(q, p) be the Hamiltonian of the system, which we assume here
to be time-independent. In section 2.3 we discuss the necessary adaptation for
the treatment of slowly time-dependent external fields.

The specification of a point in phase space completely determines the state
of the system in Hamiltonian mechanics (see section 1.2). However, in dealing
with very large systems, such a description is inadequate. We must introduce
the tools of statistical mechanics.

It is well known (Balescu 1975) that the statistical state of a system is
determined by a phase-space distribution function F(q, p; t): a non-negative
function of the 6 N phase-space coordinates and of the time, which is normal-
ized to one, as

[d¥q &%p F(q, p; 1) =1. (1.6)

On the left-hand side we have a 6N-fold integral over the whole accessible
phase space. F(q, p; t) can therefore be interpreted as the probability density
for finding the system at time ¢ at the point (g, p) in phase space. The fact
that F is normalized to one at all times is a non-trivial consequence of
Liouville’s theorem, which follows from the fact that the volume of any region
of phase space is invariant when its constituent points move according to



82 Microscopic description of a plasma [Ch. 2

Hamilton’s equations (see e.g. Goldstein 1980). From (1.6) we therefore
conclude that the total time derivative of F(q, p; t) vanishes:

dF(q, p;t) dF & ( F . 8F)
D ==+ ¥V |G, P | =0.

dr a - T\ g ap;

Combining this result with the Hamilton equations in their general form
(1.2.19), we find

oF X dF oF
W+j=1([qj, H]'aqj+[pj, H]-a)=0. (W)

Using now property (1.2.14) of the Lie brackets, we get

oF
Ft— + [F, H] =0,
or
aF
3 14, F. (1.8)

This is the celebrated Liouville equation, the basis of statistical mechanics.
The expression on the right-hand side can also be written as a linear operator,
the Liowvillian L, acting on the distribution function as

o, F=LF, (1.9)

where we use the obvious abbreviation 9, = 9 /9t, and where L is defined as
the differential operator

LEIZV: 4, H]'-a—+[p- H]-i . (1.10)
S\ dg; 7 ap; '

The phase-space distribution function contains the maximum amount of
information about the system in a statistical mechanical description. However,
for all practical purposes, in particular in kinetic theory and in transport
theory, most of this information is irrelevant. It is therefore advantageous to
describe the system in terms of much simpler quantities, called the reduced
distribution functions (rdf) £ *(q,,...,q,, P1>..-, P, t) (Balescu 1975). (The
reason for introducing a “hat” over symbols in this notation will appear in
section 2.2). These functions are obtained by integration of F over N —s



§2.1) Statistical description of a plasma 83
“irrelevant” phase-space coordinates. In a two-component system, the correct
combinatorial factor entering the definition of the general s-particle rdf is
rather complicated (it depends on the number of electrons and of ions in the

group s). We shall therefore only give the explicit definitions for the one- and
two-particle distribution functions,

g1, P 1) =Naquz dp,---dgy dpy F(q, p; 1), (1.11)

£(ar, Prs 925 P23 1) =N(N,~1) [dgs dp; - day dpy F(g, p; 1),

(1.12)

f;aﬂ(‘h, P1, 43, P2 1) =NaNﬁqu3 dp; ---dgy dpy F(q, p; t).

(1.13)

In the realistic case of very large systems (N > 1), these definitions, together
with (1.6), imply the normalization conditions for the reduced distribution
functions,

[da: dpy fi(ar, pi; 1) =N, (114)

fd‘h dp, dq, dp, f;aﬁ(‘h, P1> 42, P2 1) =N,N;. (1.15)

The importance of the reduced distribution functions comes from the fact
that all important quantities of transport theory are defined as averages of
dynamical quantities b*(q, p), weighted with f* (see chapter 3):

<b>=2qu dp b*(q, P)f(a, p; 1). (1.16)

The main goal of kinetic theory is the derivation of a closed equation of
evolution for the reduced distribution function fl“(q, p; t). It is well known that,
in general, such an equation only exists in an approximate sense. The remain-
ing sections of this chapter are devoted to a brief description of this closure
problem.
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2.2. Liouville equation for independent particles in stationary exter-
nal fields

In a first stage we consider a fictitious system of non-interacting particles. We
do this not only for pedagogical reasons of simplicity: we shall see in
forthcoming sections that the results obtained here are useful even in some
quite important descriptions of the interacting plasmas.

In the idealized system, the charged particles making up the plasma move
under the action of an external magnetic field B(x), derived from a vector
potential 4(x), and of an external electric field E,(x), derived from a scalar
potential ®,(x). In the present section, all these fields are assumed to be
time-independent. We stress again that, for the time being, we disregard the
action of the fields produced by the charged particles themselves. The Ham-
iltonian of this ideal system is then similar to (1.4.3):

Ha. 7)< gz 1 oo @) +eoila)| @)

where the index «; labels the species of particle j. Let us note the following
important structural feature. The Hamiltonian is a sum of terms, each of
which depends on the phase-space variables of a single particle j, of species «;,

N - N
H(q, p)= ¥ Hyi= ¥ Hyiq;, p)), (2.2)
: f=

Jj=1

where the function Hg/ is easily identified from (2.1). This additive structure is
characteristic of systems of non-interacting particles.

We now consider the Liouvillian operator (1.10) for our system. Because of
the linearity of this .operator (see eq. 1.2.12) and of the fundamental Lie
brackets (1.2.16), we find that the Liouvillian has the same additive structure
as the Hamiltonian:

N
L=} Ly, (2.3)
j=1
where
Ly=[Hy,..] | (24)

is an operator involving only the derivatives 3/d¢q;, 3/3p;, acting on the
coordinates of particle j (of species a)).
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In the present case of a system of non-interacting particles, it is trivially
simple to derive from the Liouville equation,

F= [ ]zvj L;-’J]F, (2.5)

an exact, closed equation for the reduced one-particle distribution function.
Indeed, recalling definition (1.11), we multiply both sides of (2.5) by N, and
integrate over the positions and momenta of all the particles, except those of
particle 1 of species a; we find (Balescu 1975)

azfia(%, piit) =L?ﬁa(41, P t)

because the contributions of all the one-particle Liouvillians other than L
vanish by partial integration.

We now adopt a more compact notation: we drop the index 1 from f& i
being understood that £ denotes a one-partlcle reduced distribution functlon
Moreover, in the text, we shall refer to f* simply as the distribution function
(of species a). The index 1 is also superfluous on L} and on the variables ¢,
p;- Thus, we simply write

3,/ =L(q, p; 1), (2.6)

or, equivalently,
o f*=[Hg, 7], 2.7

or, even more explicitly,

and
1 2
Hf = 5— +e.Po(q). (2.9)

The important feature of this result is the following. For a non-interacting
system, the reduced one-particle distribution function obeys an equation of
evolution which has the same form as the Liouville equation (1.9) in the
reduced phase space defined by the position and the momentum of a single
particle.
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The Liouville equation was derived in the framework of Hamiltonian
mechanics by using a set of canonical variables. The discussion in chapter 1
has shown that such variables are inconvenient for electromagnetic systems.
The natural variables, which have a simple physical meaning, are not related
to ¢ and p by canonical transformations. The formalism of pseudo-canonical
transformations developed in section 1.2 allows us, however, to deal very
simply with such changes of variables. Indeed, the equation of evolution (2.7)
is expressed in terms of a Lie bracket; its form is therefore independent of the
choice of the basic variables. Thus, equation (2.7) is valid in any set of
phase-space coordinates, provided the Lie bracket is calculated in the ap-
propriate way. Only the explicit form of the Liouvillian will be different in
different sets of coordinates (as illustrated below).

There is, however, a subtle point that should not be missed when dealing
with pseudo-canonical transformations. Upon a transformation from (g, p) to
(Q, P), the distribution function transforms as

f*(a, p; 1) = f*(q(Q. P), p(Q, P); 1) =f"*(Q, P; t) (2.10)

Any dynamical functlon b%(q, p) transforms similarly into a function
b’°(Q, P); but the basic formula (1.16) for the average becomes, in the new,
non-canonical coordinates,

(by=Y [d@ dP|J*(Q, P)|b"*(Q, P)f"(Q, P; 1). (2.11)

The new feature is the appearance of the Jacobian J® of the transformation
(@, p) — (Q, P). Hence, this formula can be interpreted as follows. Under the
pseudo-canonical transformation (g, p) — (Q, P), the true distribution func-
tion, i.e. the weighting function in the statistical average, transforms as

f*(a, p; 1) > 17%(Q, P)|f*(Q, P; 1). (2.12)

In particular, it is the functiqn | J*(Q, P)| f "*(@, P; t) that is normalized to
N, like the initial function f%(q, p; t) (eq. 1.14),

Ja@ dr1=(Q. P)1*(Q. P; 1) =N, (2.13)

Note that this imporiant point never arisés in the “traditional” problems of
statistical mechanics, when consideration is limited to canonical transforma-
tions. Indeed, for canonical transformations, the Jacobian equals one (see eq.
1.2.22).
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It is therefore desirable to derive an equation for the true distribution
function |J*(Q, P)|f'*(Q, P; t). In order to do so, we need the following
lemmas.

Consider first the case when the new variables (Q°, P°) are canonical. We
then easily prove the identity

/

p2

(51 03] + g L £2]) =0 (214)

Indeed, by Hamilton’s equations (1.2.23), the left-hand side is simply

Y H+

DA

/
( 9 0 0 aH)EO.

It then follows that the reduced Liouville equation (2.8) can be cast into two,
equivalent forms,

Fra

I5p™

8./ =[Hs, 0] E,ch"’+ [HS, P°

8./ = an ([H5. @1/) + 55 aPc ([H;. P]S7). (215)

The generalization of these formulae for pseudo-canonical transformations
rests on the following identity, analogous to (2.14):

/
X (ag (17101, 0. + 55 (10711, P])) =0 (216

This remarkable formula holds for any Hamiltonian. Its proof is rather
cumbersome and will not be given here [see Littlejohn (1981), and especially
Littlejohn (1983) for the general case].

Combining now (2.16) with the Liouville equation (2.8), we easily derive

a,|f"|f""= ([HO,Q]|J"|f“’)+ -([HE, P)|J=| f'%).
(2.17)

This is the basic equation of evolution for the true distribution function
[ J*| f'% 1t will be called the second form of the Liowville equation. We may



88 Microscopic description of a plasma [Ch.2

immediately point out a feature that will prove useful in applications: this
equation has the explicit form of a conservation equation in phase space. The
time-derivative of the density |J%|f’® equals the divergence of a flux in
phase space.

We now illustrate these general results on some examples. The first one is
quite important. We have already stressed in section 1.4 the fact that the
canonical momentum p is a very inconvenient and unphysical variable. A
description in terms of the velocity v is much to be preferred. We thus perform
the pseudo-canonical transformation described in table 1.4.2. Under this
transformation, the distribution function transforms as (see eq. 2.12)

fa, p; 1) > mif(q, v t).

We note that, though the transformation is not canonical, the Jacobian J“ is
particularly simple, being a constant (independent of ¢ and v). We take
advantage of this in the following way.

In all the previous discussions, the distribution function %4, p; t) served
as a reference, being expressed in terms of canonical variables, and being
normalized to N,. Having constructed the formalism on that basis, we are no
longer in need of a “canonical reference frame”; it is much preferable to have
a clear physical basis serving this purpose. We therefore define a new “basic”
distribution function, by incorporating the Jacobian of the transformation
(g, p) — (g, v) into the new function

fo(g, v 1) =mlf""(q, v; 1). (2.18)

(This new, and definitive refe;ence distribution function wears no “hat” any
more!). By this definition it follows from (2.13) that the function f%(q, v; t) is
normalized in the variables ¢, v as

qu dof*(q, v; 1) =N,. (2.19)

From here on, all the pseudo-canonical changes of variables we may want
to do will be referred to the set (g, v): in particular, the Jacobian J* will
always be understood as the Jacobian of the transformation (g, v) — (Q, P).
(This convention is also used in the tables of chapter 1.)

The basic distribution function obeys the Liouville equation (in its first
form):

9,f%(q, v; 1) =Lf*(q, v; 1), (2.20)
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with the Liouvillian, expressed in the particle variables (g, v),
[+3 0 a a a
L*=[HE, q] E + [HS, v] "o

or, explicitly using table 1.4.2,

L= —o 5o — 2= (L [oAB@)] + Eo(a)) 5. (221)
with
Ey(q) = —a%%(q). (2.22)

The second form of the Liouville equation is almost trivially derived in this
case, where J* = 1, by simply noting that (v A B) commutes with 9 /9v:

9,f*(q, v; 1) =Z°f*(q, v; 1), (2.23)
with
0 a
$"=—aaq-v—%-%;—(%[v/\B(q)]+E0(q)). (2.24)

Clearly, #* must be considered as an operator; in other words, the deriva-
tives d/0q, 0/0v act on everything that is written to their right [including, for
instance, f° in eq. (2.23)].

From here on, we may use the formalism of pseudo-canonical transforma-
tions for performing very simply any required change of variables. As a
particular illustration, which will prove very important in the study of trans-
port in magnetically confined plasmas, we consider the transformation to any
of the natural guiding centre (NGC) variables discussed in section 1.8, for
instance, the set (Y, &, M, ¢), table 1.8.3. The enormous advantage of the
pseudo-canonical formalism lies in the fact that the transformation of the
Liouville equation does not require the extremely tedious work of transfor-
ming the derivatives 0/0q, 0/0v by the chain rule [a mere look at egs.
(1.8.2)-(1.8.5) would discourage many people}; rather, the Lie brackets in eq.
(2.8) are directly translated into the appropriate, simple expressions in the new
variables, taken from table 1.8.3. Thus, we call f*(Y, &, M, ¢; t) the distribu-
tion function in the new variables *.

* We shall henceforth omit the primes used, e.g. in eq. (2.10). One should never forget,
however, the meaning of this abridged notation: f%g, v; t) = f*q(Y, & M, ¢),
oY, &, M, ¢); )=f""(Y, & M, &; 1) = f*(Y, &, m, ¢; 1).
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The first form of the Liouville equation is
of (Y, & M, ¢; 1) =L (Y, &, M, ¢; 1), (2.25)

with:

N ] o ] o ) o ]
L*=[Hg, Y] -a_Y+[H0, g]a—g+[H0, M]a—ﬁ+[H0, ¢]a—¢

9
- _ * ok,
U,b; Y

~ (7', + U,b*R-3Ub+(V A b))%. (2.26)
Clearly, the quantities U,, £2,, b¥* must be provided with a species index a,
because they must be evaluated with different parameters for ions and for
electrons. Thus

Uy =0 {(2/m,)][ €~ e (Y) — MB(Y)]}"7, (2.27)
Q,= 3‘1%(—6’2, ‘ (2.28)

and an obvious definition for b} *. Note that
2.<0, Q,>0.

The second form of the Liouville equation is

* %

Bl . ol e| B,
0 —__f (Y’ 6’9 M7¢9 t) =% —_——f (Y9 é” M9 ¢9 t) ’

\m2|U, | m2\U, |
(2.29)

where we used the Jacobian taken from table 1.8.3; in the present case it is no
longer a constant, but a non-trivial function of ¥, &, M,

Bj B(Y) €
JU| = = 1+ UabY-v/\bY).
1= e = (14 g Gy U (1) [0 A B(Y)
(2.30)
The operator . is the “transpose” of the operator L*:
a0 p_ 5 D 4 D
L= % Y a(g,@“’ 8MM 8¢¢' (2.31)
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This example is sufficient for illustrating the use of the pseudo-canonical
transformations. It avoids all tedious calculation of derivatives, or even more
tedious averaging operations.

Before concluding this section, we want to settle some questions of vocabu-
lary. Some authors loosely call (2.25)-(2.26) the “Vlasov equation”, or even
the “collisionless drift kinetic equation”. Such names are due to an analogy in
form; they are misleading, because the physical content of these various
equations is quite different. Equation (2.25) is the (reduced) Liouville equation,
or equivalently, the first equation of the BBGKY hierarchy, for a system of
non-interacting particles in the presence of an external electromagnetic field.
The Vlasov equation, on the contrary, describes a system of interacting
charged particles: it will be derived in section 2.5. As for the drift kinetic
equation, it is farther away from the Liouville equation, as it involves a
peculiar averaging over the gyrophase, which will be discussed in chapter 10.

2.3. Liouville equation for independent particles in time-dependent
external fields

We now discuss the extension of the previous results to the case where the
external fields derive from time-dependent potentials ®(x, ¢), A(x, ¢). The
main result of section 1.9 is that the Hamiltonian formalism is applicable
exactly as in the stationary problem, provided that

— the phase space is extended by adding a pair of canonical variables ¢, A;

— the Hamiltonian H(gq, p) is extended into

H(q, p,t, h)=H(q, p, 1) +h; (3.1)

- the motion is parametrized by a “proper time” 7.

The formulation of statistical mechanics in this framework is very easy in
its first steps. All we need to do is define an extended phase-space distribution
function F,

ﬁ(q, P, h, t’ T)Eﬁ(qu"',a}v, P1,"',PN, h, t, T)' (32)

As h and ¢ are just additional canonical variables, the derivation of an
extended Liouville equation, generalizing (1.9) and (1.10), is straightforward:

3, F=1LF, (3.3)
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’...]’

Mz X

~ d ~ d
+[H, h]—a‘z +[H, t]—a-t-

- % ([Aa] o+ 1A 0] 5

(3.4)

Going through the same steps as in section 2.2, we may derive a Liouville
equation (in the second form) for the reduced (extended) one-particle distribu-
tion function f*(Q, P, k, t; 7), expressed in terms of arbitrary, not neces-
sarily canonical variables Q, P, k, ¢ (see eq. 2.17),

o, || fr =L | ]| /2, (3.5)
with
P 3 Q]+-337-[1-73, P]+%[ﬁ3, k]+%[1—7{,‘, ],
(3.6)
where

H(Q, P, k,t)=HQ, P, t) +k.

All these results are quite straightforward, but purely formal. We are left,
however, with the problem of understanding the physical content of the
extended phase-space distribution functions and with the interpretation (or
elimination!) of the artificially added degrees of freedom. In this context, we
meet right away with a difficulty. The statistical interpretation of the distribu-
tion function f “(Q, P, k, t; T) requires its normalization over the entire
extended phase space,

JE dew ak [ de|Jx(Q, P, k, 1) f4(Q. P, k, 1; 7) =N,
(3.7)

This is a very strange condition, as it seems to imply that the distribution
function is normalized only when integrated over ¢ from — oo to + o0, i.e. over
the whole past and future history of the system!
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The missing point is that the set of variables (Q, P, k, t; ) which are
treated mathematically as independent variables are not physically indepen-
dent. At this stage, having completed the Hamiltonian machinery, we are able
to take into account the relations expressing the interdependence of these
variables and go over to a set of concepts involving only physically indepen-
dent variables. This operation must be done carefully, in order to avoid
inconsistencies. We first prove a few useful lemmas.

Lemma 1. Consider a set of (generally non-canonical) phase-space variables
Z)=(Q, P, k, t) obtained from the basic particle variables (g, v, h, t) by a
pseudo-canonical transformation for which

[¢, 0] =0, [¢, P]=0, [¢, k] =1. (3.8)

Then, the extended Jacobian J® equals the ordinary Jacobian J* of the transfor-
mation (g, v) = (Q, P).

Proof. Let us use notations similar to (1.2.29) and define
— the 8 X 8 matrix 3,

Sh=[2* 2], Z*=(Q, P, k, t);
- the 6 X 6 matrix 2™,
sm=(2', Zz™, Z'=(Q, P).

With conditions (3.8), the matrix 5 has the form

'm (6 % 6)

M
Il

—_—-O0o00 O OO

O % % X X X *

where * denotes some matrix elements, not necessarily null. Clearly, because
of the peculiar outermost row and column, the determinant of this matrix
equals the determinant of the matrix 2:

[ EM ) =(=1)«(=1)- | =

The lemma then follows from Littlejohn’s theorem (1.2.36).
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Lemma 2. If the fundamental Lie brackets of the variables Z* are independent of
the variable k, the Jacobian is also independent of k.

This property follows trivially from (1.2.36).
Lemma 3. If the conditions of Lemma 1 are fulfilled, the equation of motion of t is
i=1. (3.9)
Lemma 4. The following relation holds quite generally:
HXQ, P, t)= —k. (3.10)
Indeed, from (3.1) we get
Hy = [Hg, H5] = [Hg, Hy] + [Hg, k] = [Hg, k],
k= [k, H3] = [k, H5] + [k, k] =[k, H].

From lemmas 3 and 4 we might be tempted to conclude (disregarding
irrelevant integration constants) that

t=r, (3.11)
HXQ, P, t)= —k, (3.12)

or, equivalently,
HY(Q, P, k, t)=0. (3.12a)

These relations may be used for the elimination of the subsidiary variables ¢
and k.

However, one must be very careful in handling such equalities. These are
typical examples of the class of relations called “weak equalities” or “sub-
sidiary conditions”. Their peculiar nature was first discovered by Dirac (1949),
then further developed by Dirac (1985) (this concept was extensively used in
his work on the Hamiltonian formulation of gravitation); a quite extensive
account is found in the book by Sudarshan and Mukunda (1974). We quote
here a paragraph from the article by Dirac (1958), which clearly explains the
problem: “The definition (1.2.18) of the Poisson bracket (P.b.) requires the q’s
and the p’s to be considered as independent variables. Any relations which restrict
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this independence of the q’s and p’s [such as egs. (3.11), (3.12)] must not be used
before one works out P.b.’s or the P.b.’s would cease to be well-defined quantities.
To remind us of this limitation in the use of some of our equations, it is convenient
to call such equations weak equations...”. [The equation numbers are those of
the present work.]

Whereas the correct handling of weak equations is always somewhat
delicate in the framework of ordinary dynamics, the distinction between
strong and weak equations can be made very clear and simple in the frame-
work of statistical mechanics. All the operations leading to (3.5) involve only
strong equations, i.e. Lie brackets, in which k and ¢ are treated as indepen-
dent variables. At this stage we make use of the subsidiary conditions by
requiring the following principle: The only physically accessible region of the
extended phase space is the region where the weak equations (3.11), (3.12) are
satisfied.

This implies that the distribution function f%(Q, P, k, t; 7) for a physical
system must obey the following normalization condition, which replaces (3.7):

[do deoo dk[© di|Fe(Q, P, k, 1)| 8(H3(Q. P, k, 1))

x8(z—1)f*(Q, P, k, t; T)=N,. (3.13)

Thus, we arrive at the following general rule: the weak equations must be
expressed by 8-functions which restrict the extended phase space to the physically
accessible region. In this way, the unacceptable features of postulate (3.7) are
suppressed.

At this stage, the unwanted variables can be explicitly eliminated. We first
perform the trivial integration over t,

[a@apii(o, P, T)|f_°° dk 8(AX(Q, P, k, 7)) f(Q, P, k, 7; 7)

=N,.

a

(3.14)

In writing this equation, we made explicit use of lemmas 1 and 2. We now
introduce the physical distribution function f*(Q, P; t) by the following defini-
tion:

7%(Q, P; t)Ef_oo dk 8(HX(Q, P, 1)+ k)f*(Q, P, k, t; 1). (3.15)
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As a result of lemmas 1 and 2, this distribution function obeys the “usual”
normalization (2.13)

fdQ dP|J*(Q, P, t)|f*(Q, P; t)=N,. (3.16)

Finally, we derive the physical Liouville equation (in the second form) by a
straightforward procedure from (3.5) and (3.6):

%fdk dt 8(HZ +K)8(t— )| J*| 7*(Q, P, k, t; 7)
= 217%(Q, P, )1 7°(Q, P; )
=fdk dr 8(HS +k)8(t~)
T WL TP T
X|J*(Q, P, )| [*(Q, P, k, t; 7)
+ [dk dt(%8(t—7)8(H6’+k))

X|J(Q, P, )| f%(Q, P, k, t; 7).

A careful calculation, involving a partial integration over ¢, the use of Lemma
4 and a final renaming of 7 — ¢, leads to the result

d
-&|J"(Q, P, t)lfa(Q’ P, t)

=(%-[H3(Q, P, t), 0] +—887-[H3(Q, P, 1), P])

X|J(Q, P, t)| f*(Q, P; 1), (3.17)
or, written more compactly,

1 (e) 1 f*(e) =2(e) | T*(e) | f2(2). - (318)
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Finally, eq. (2.16) is easily extended to the non-stationary case; this leads to
the derivation of the Liouville equation in its first form,

8.f*(t) = L*(e) f*(¢), (3.19)

with

() = [H5(Q. P. 1), @] 55 + [H3(Q. P, 1), Pl s (320)

Our results can be summarized as follows. The distribution function
f°(Q, P; t) satisfies, in the non-stationary case, a Liouville equation which is
formally constructed from the Hamiltonian by the same procedure as in the
stationary case. In other words, the time variable in the Hamiltonian — and
thus in the Liouvillian — appears as a mere parameter. The extreme simplicity
of this final result should not hide its non-trivial nature. We also stress that the
results obtained here do not depend in any way on assumptions about the
rapidity of the time-dependence of the external fields; they are valid equally
well for fast and for slow time variations.

As an illustration of these results, we write down explicitly the Liouville
equation, expressed in terms of the natural guiding centre variables
(Y, & M, ¢), derived in section 1.9 for a slowly time-dependent external
field. In this case:

d ; 0 . 9 - d

aY+g@+MW+¢ %

L*(t)=7Y-

This equation must be combined with the equations of motion collected in
table 1.9.1. The difference with egs. (2.25) and (2.26) is that &+ 0 in the
non-stationary case. We thus obtain

o fU(Y, & M, ¢; t) =L (1) f (Y, & M, ¢; t), (3.21)
with
a — d _ d.i o . i
L*(1) = =~ Upb g — ¥ a5+ = U,(b34(Y, 1)) 55

—(—1—9,,+ Ub+*R—1Ub(v Ab))—a%, (3.22)

where we introduced the drift velocity V3 defined as

Ve = m€9 bA(mUXbv)b+MVB+eywd). (3.23)




98 Microscopic description of a plasma [Ch. 2

This equation will play a leading role in the neoclassical theory of transport
(chaps. 10-16).

2.4. The BBGKY equations and the kinetic equation for interacting
charged particles

We now go one step higher in the complexity (and also in the realism) of the
description of a plasma, by taking account of the interactions among the
charged particles. The motion of the latter is determined not only by the
external electromagnetic fields (the source of which is outside the plasma), but
also by the fields produced by the particles themselves. Each particle in the
plasma feels, besides the external field, an electromagnetic field which is wildly
varying, as it depends on the instantaneous coordinates and velocities of all
the other particles in the system. This is the essence of the interaction effect.

The simplest way of accounting for the interactions in plasmas is by
postulating the following form of the Hamiltonian [expressed in the basic

paItiClC variables (ql’ U175 4N vN) = (q’ U)]:
N N
H(g,v)= X [Im 07 +e.(a)| + LT V™ (g;. 4.)
Jj=1 j<n=1
N N
= Y Hy+ XY Ve (4.1)

The new feature, as compared to (2.2), is the appearance of a term that is a
sum, over all distinct pairs of particles, of functions depending non-additively
on the positions of two particles, j and n (of species a;, a,). We assume that
the interaction potential describes the Coulomb interaction of two charged point
particles:

1
V= V(g q,) = e, e, ——. 42
J (qj q ) Ta: lqj — qnl ( )

V%~ is thus a function of the relative distance between the two particles, and
is independent of their velocities.

It must be realized that the assignment (4.2) has several limitations, of
which we discuss the following two. ‘

(1) Equation (4.2) assumes that the plasma is fully ionized. In other words,
it excludes the presence of neutral particles (see the discussion in section 2.1).
We also assume that the charge state of all the ions is permanent, i.e. we do
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not consider such processes as ionization, recombination or charge exchange.
For all these excluded processes we would need to take into account com-
plicated, non-Coulombic interactions. Moreover, a classical description is
inadequate for processes in which the internal structure of the atoms is
relevant: quantum mechanics becomes indispensable.

(2) Even for a fully ionized plasma, (4.2) represents a non-relativistic
approximation of the interaction process. It is not easy to formulate a general
validity criterion for this approximation. Roughly speaking, we may say that
first-order relativistic corrections (i.e. terms of order v/c) may be important
under not too extreme conditions. Indeed, the source term for the magnetic
field in Maxwell’s equations is 47(j/c), and the electric current density j is
defined in terms of the average relative velocity of the particles. Thus, a
consistent macroscopic description of the plasma requires a dynamical theory
incorporating at least the first-order relativistic effects. This point will be
discussed again at the end of section 2.5.

On the other hand, the higher-order corrections [of order (v/c)? or higher]
are necessary for a relativistic description of the collision processes. These
effects become observable only when there is a sizeable fraction of the
particles having velocities close to the speed of light. Alternatively, it may be
said that the thermal energy of the particles becomes of the order of their
rest-mass energy. Such extreme conditions can occur (marginally) in some
laser-fusion experiments, and are typical of the interior of some classes of stars
(such as the white dwarfs).

Finally, it may be added that the study of the interactions of magnetically
confined plasmas with a radio-frequency field used for their heating and for
current-drive experiments may require a relativistic theory, because the rele-
vant ( = resonant) particles involved in the interaction are those of the high-en-
ergy tail of the distribution function.

The fully relativistic description of interacting systems is by no means a
simple problem: it will not be discussed here (see Klimontovich 1964, Balescu
and Kotera 1967, Balescu et al. 1967, de Groot et al. 1980).

In spite of these limitations, the model of a fully ionized non-relativistic
plasma covers a large spectrum of interesting problems and will be the main
object of this book. The first stages of the implementation of this description
closely follow the beginning of section 2.1. We define again a phase-space
distribution function F(q, v; t) (which we directly express in terms of veloc-
ity, rather than momentum variables). This function obeys the Liouville
equation (1.8) in which, of course, the Hamiltonian is now eq. (4.1). In the
next step, we introduce reduced distribution functions and derive from the
Liouville equation an equation for the reduced one-particle distribution func-
tion f%(q,, vy; t) (see Balescu 1975). At this point arises the essential dif-
ference introduced by the interactions. The latter equation is not closed for
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(g1, vy; t), but contains a term involving the two-particle reduced distribu-
tion function f*A(q,, v,, q,, vs; 1),

3,f%(q1, v15 1)

=Lif*(q1, v; 1)+ ) quz do, L3P (g1, 01, 42, 125 £). (4.3)
B=e,i

The operator L’“B is the interaction Liouvillian, describing the interaction of

particles 1 (of species a) and 2 (of species B):
L 6=[vef, G| (4.4)

for any function G of the coordinates of particles 1 and 2.

The non-closed character of eq. (4.3) reflects the basic difficulty of statisti-
cal mechanics: if we derive an equation for f°# it will contain the three-par-
ticle distribution function, and so on. Thus, the exact solution of the problem
requires the solution of N (practically: oo) coupled equations for all the
reduced distribution functions: the well-known BBGKY hierarchy.

This is not the place for a detailed discussion of the various approximation
methods used in statistical mechanics and of their justification (see Balescu
1975). We shall use in this book a simple form of the weak coupling approxi-
mation, which is sufficient for treating many problems of interest. In order to
define this approximation, we first introduce the concept of a binary correla-

tion function g°f(q,, v, q,, to; 1),
g%(q1, 01, 45, 055 1)
= (g1, 01, g2, v5 1) —f%(q1, v1; 1)fP(qa, 035 1). (4.5)
The correlation fux{ction measures the deviation from statistical indepen-
dence of the two particles. It is expected, on physical grounds, that g*# — 0 as

the relative distance between the particles increases. One may usually define a
quantity r., called the range of the correlations, noting that

gap(‘ll’ 01,4, 03 t) =0 for |q,—q,|>r..

The following normalization property follows from eq. (4.5), and egs. (1.14)
and (1.15):

Jda, do, dg, dv, g%(g,. 01, 4, £33 1) =0. N CXY
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One can similarly define three-body, four-body,... correlation functions. The
physical origin of the correlations is, naturally, the existence of interactions,
which cause the particles to feel their mutual influence.

It is well known that, in a plasma, the relative importance of the Coulomb
interactions, compared to the mean kinetic energy (i.e. the thermal energy) is
measured by the characteristic dimensionless parameter p,, involving the
charge e,, the mean particle density n, and the temperature 7,:

13€2n A (ZT,+ T))

= (4aNon;) " = (36 4,
Bp ('3'77' Dnl‘) ( 77) T;Ti(l-l-Z) s ( 7)
where Ay, is the Debye length (Trubnikov 1965),
-1,2
4nZe*(n T, + n,T,
. (n.T. +nT;) (4.8)

I.T:(1+2)

The plasma parameter is defined by various authors in slightly different
ways, differing by a numerical factor, or by the exponent in eq. (4.7). The
definition adopted here has a very simple physical interpretation. Up to the
factor (36 7)'/> ~ 4.836, the right-hand side of eq. (4.7) represents the ratio of
the Coulomb energy, evaluated at the mean distance of the ions, n; /3, to the
mean thermal energy, defined as

o ZLAT (11 \[(1 1
(1+2zZ)1T, nT,  nJd, n, ng)

where we used the electroneutrality condition n. = Zn; and where the temper-
ature is expressed in energy units (see section 3.2). Other authors prefer to use
the parameter Np,

Np = $7Apn; = pp 2. (4.9)

The parameter N represents the number of particles in a sphere of radius
equal to the Debye length Ap,.

We define a plasma as being weakly coupled when the following relation is
satisfied:

pp<1. (4.10)

(This implies Ny, > 1.) Clearly, this condition can be met in two ways. For a
given temperature, the condition is satisfied for sufficiently low density;
alternatively, for a given density, it holds for sufficiently high temperatures.
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Thus, in a weak coupling regime, the potential interaction energy of the
particles is, on the average, very small compared to their mean kinetic energy.
From the previous discussion, it follows that the correlation function g®# is
also small under such circumstances, typically of the same order as the
interaction potential. As for the s-body correlation functions (s > 2), they are
of higher order of smallness. A natural truncation of the BBGKY hierarchy is
obtained by neglecting all correlation functions of more than two particles.
The hierarchy then reduces to a set of two coupled equations.

The equation for f* is obtained by combining (4.3) with (4.5) [and using
the obvious abbreviation j for the set (g;, v;)],

8 /°(1; 1) = LIf(1; t)+2 [d2 L3P 215 0) 782 1)

+y f a2 L g°f(1,2; 1). (4.11)
B

This equation is coupled to the equation for the correlation function (see
Balescu 1975), in which the three-body correlation is set equal to zero:

9,g%%(1,2; 1)

=(Ly+LE)g™*(1,2; 1) + L3 g°f(1,2; 1)
# T fa[ L7 1105 0872 35 0 + LB 705 0571, 3: 1)

+(LS+LE) £7(3: 1) (1, 25 )] + L1 0) 7A(2; 1)
(4.12)

Even this set of two coupled equations for f* and g** is too complicated
for explicit calculations. By using arguments which will not be described in
detail for lack of space, it can be shown that the following two simpler
versions of (4.12) are appropriate for describing a plasma. In a first stage, we
retain

9,8°(1,2; 1) — (L3 + LE)g™(1,2; 1)

-zfds[L"’Y o(1; t)gl’*(z 3; 1)+ LEfP(2; 1)g™(1, 3; 1))

+L3 (L 025 0). [BL] (4.13)
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The second, simpler version is
9,8°%(1,2; 1) - (L§+ LE)g*P(1,2; 1)

=L (1 0 P2 0).  [L] (4.14)

The main difference between the two approximations can be readily recog-
nized. In eq. (4.14), only the two particles 1 and 2, appearing in the unknown
correlation function, are involved. One therefore expects this approximation to
describe an evolution driven by binary collisions of the particles (in the weak
coupling approximation). The end result of this approximation will be the
Landau kinetic equation. On the contrary, in eq. (4.13), we also retain interac-
tions with a third particle taken from the “bath”. This implies that we admit a
certain class of many-body interactions in the approximate description of the
evolution. The product of this procedure is the Balescu—Lenard equation,
which contains a dynamic description of the screening or polarization) in the
plasma, a typical collective effect.

The last stage in reaching a true kinetic equation is the elimination of the
correlation function between eqs. (4.11) and (4.13) or (4.14). This is a crucial
and non-trivial step, which will be discussed in section 2.6. Let us say here that
if the formal solution of (4.14) or (4.13) is substituted into (4.11), the resulting
equation is quite untractable, because of its mathematical complexity. A
careful study reveals, however, the possible emergence of a regime in which the
correlation function at time ¢ becomes a functional of the one-particle
distribution functions at the same time ¢ (Bogoliubov 1962, Balescu 1975):

g*(1) =g**{ f(1)}.

When this kinetic regime is established, the substitution of this correlation
function into (4.11) results in

871 ) =Lif*(1; )+ T fa2 L 12(15 0)fA(2; 1) + 4 ={ (1)}
B

(4.15)

This is the typical, generic form of a kinetic equation. This concept is
defined as a closed, Markovian, generally non-linear equation of evolution for the
one-particle distribution function f*(1; t). The word “Markovian” means
(broadly speaking) that the kinetic equation only involves the value of the
unknown distribution function at time ¢ In particular, the rate of change
0,f*(1; ¢t) is not influenced by the values taken by the distribution function in
the past, i.e. f*(1; t—1), > 0.
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We may already characterize the role of the various terms of (4.15) in
driving the change in time of the distribution function. LT describes the effect
of the free motion (kinetic energy) as well as the effect of the external electric
and magnetic fields. The interactions affect the motion in two ways. The
second term on the right-hand side will be shown to represent the effect of an
average self-consistent field acting on particle 1 and produced by all the other
particles in the system. Besides this “smooth” background action, the interac-
tions also act more “violently” upon a sufficiently close approach of two (or
more) particles. This important effect is contained in the collision term X"*. Its
specific form depends widely on the nature and the state of the system. For
instance, it is quite different when only binary collisions are considered or
when collective effects are included; its form depends on the density and the
temperature, being quite different for a fusion plasma or for a degenerate
quantum plasma; it can be affected by the presence of a (very strong) electric
or magnetic field, etc.

The most important property of (4.15) is the following. When the kinetic
regime is established, the Hamiltonian (or Liouvillian) structure of the evolution
process is lost. The detailed reason for this “symmetry breaking” will appear in
section 2.6. Let us say here that this feature opens the gate towards the
description of a dissipative and irreversible evolution. This property was absent
in the initial Hamiltonian description, but is indispensable for understanding
macroscopic physics.

2.5. The Vlasov kinetic equation

We now derive the explicit form of the kinetic equation for the one-particle
distribution function f*(1; ¢) in the simplest non-trivial case. We therefore go
back to eq. (4.15) and analyze its various contributions. We first note that the
interaction Liouvillian L]5” has the form

LSB = [VlVaB(‘h - ‘12)] (3, —3,)

o1
1|‘11_‘12|

=eaeﬁ( ).(al_az), (5.1)
where the following abbreviations were used:

V]E—, aIE__. . (5.2)
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The second term on the right-hand side of (4.15) can be transformed as

> Jaz Lis? £2(15 ) (25 1)

= ):fdz (vE)-(mz'0,— mz'8,) f*(1; 0)fP(2; 1)
B

(o5 Javitre: JREINET
B

= ;—E(ql; £)0,/°(1; 1), (5-3)
where
E(g;; 1) = —v,®(q1; 1) (5.4)
and:
D(q1; 1) = Eepquz do, 3= /(42 03 1) (5.5)

These results have a very simple physical interpretation. We recognize in the
second equality (5.3) the gradient of the average interaction potential which, in
turn, can be expressed in the form of an electric field E deriving from a scalar
potential @, defined in (5.5). The latter has exactly the form of the potential
produced by a macroscopic continuous charge distribution o,

o(g,; t)=§epfdvz 12(q2, vy; 1). (5.6)

More precisely, the potential ®(g,; ) is a solution of the Poisson equation
v2®(qy; 1) = —4mo(qy; ). (5.7)

This effect of the interactions can be described as follows. Each particle (1)
feels the action of an average electric field produced by all the other particles
in the system; these particles act like a “smeared-out” continuous charge
distribution a(q;; ¢): they lost their discrete, point-like character in the process
of averaging. This electric field is self-consistent in the following sense: E acts
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on the distribution function f* and makes it change in time; but as f*®
changes, it modifies, in turn, the potential through (5.5).

We now note that (5.3) has been reduced to the same form as the electric
field term in the one-particle Liouville equation (2.20)-(2.21). The latter field
E, is, by definition, an external field, produced by sources outside the plasma:
the corresponding potential @, therefore obeys the homogeneous Laplace
equation, i.e. eq. (5.7) with ¢ = 0. We now define the fotal electric field in the
plasma, E(q; t), as

E(q; t)=Ey(q; t) +E(q; 1). (5.8)

It derives from the potential & = &, + ®, which obeys the Poisson equation
(5.7) (with the same source term ¢), with appropriate boundary conditions.

We may thus write the kinetic equation (4.15), omitting the collision term
2¢“, in the explicit form

/(1 1) = =0 Vif (15 ) = o= L AB) +E) 0,771 ),
(5.9)
which is coupled to the Poisson equation
v -E(q; 1) =4w§eﬂfdvfﬁ(q, v; t), (5.10)
together with
Vv ANE(q; t)=0. (5.11)

Equation (5.9) is the celebrated Viasov equation (Vlasov 1938) which plays a
fundamental role in plasma physics. It is also called the “collisionless kinetic
equation” (or, very improperly, the “collisionless Boltzmann equation”). One
feature is immediately striking: it has the same form as the one-particle
Liouville equation (2.20)-(2.21). But one should never forget the essential
difference between these equations. In the Liouville equation, the electric field
E, is external, i.e., it is a prescribed function of ¢ and ¢. As a result, the
Liouville equation is linear in f®. On the contrary, the “linear” form of (5.9) is
only apparent, because here the electric field is to be considered as a second
unknown function, along with f*; the Vlasov equation is coupled to the
Poisson equation. Hence, the Viasov equation is non-linear. This property is a
necessary consequence of the interactions, and clearly appears in the forms
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(4.15) and (5.3). It will be seen in Part III of this monograph what an
important role this non-linearity plays in the description of plasma turbulence.

From egs. (5.9)-(5.11) one derives some feeling of uneasiness from the fact
that the electric and magnetic fields appear to be treated unsymmetrically.
Indeed, E is the total field, determined self-consistently by (5.10)-(5.11),
whereas B is purely external. Moreover, E is determined by these equations as
a potential, electrostatic field. The origin of this asymmetry is clear: we have
described the interactions as purely Coulombic. A more complete treatment
should include the full electromagnetic interactions; this, in turn, requires a
relativistic theory. This is not an easy matter, when full generality is necessary
(Balescu and Kotera 1967, Balescu et al. 1967, Balescu and Poulain 1974). A
simple treatment, sufficient for the derivation of the Vlasov equation, is given
by Klimontovich (1964). We do not go into the details of the calculation,
because the result is easily guessed from the previous discussion. The average
velocity of the particles builds up an electric current, which acts as a source of
a self-consistent magnetic field B(q; ¢) that must be added to the external
field in order to produce the total field B(Q; ¢).

As a result, the Vlasov equation (5.9) is still valid as it stands, but it is
coupled to the full set of Maxwell equations,

VE(g; 1) =4nLes [dof(g, v 1),
B

V AE(q;t)=—-c'3,B(q; t),

v -B(q; t) =0,
VAB(g; 1)=c ' 3E(g; 1) + (4n/c) Lep [dvof(q, v 1).  (5.12)
B

Clearly, if we let ¢ — oo, we come back to the previous picture. Equation
(5.9) and (5.12) form a complete description of the interactions in all cases
where the collisions can be neglected.

2.6. The Landau kinetic equation

We now turn to the derivation of the collision term in eq. (4.15). This step is
not a mere translation of the symbols of (4.11) as in the case of Vlasov
equation, but requires new, non-trivial physics. [For a general treatment, see
Balescu (1975).]
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We start on a formal level. Our goal is the elimination of the correlation
function g®f(1,2; t) from the last term of (4.11). For this purpose we must
solve one of the truncated versions of the second BBGKY equation: we choose
here the simplest case, i.e., the weak coupling version (4.14). This linear,
inhomogeneous equation for g*A(1,2; ¢) is formally solved in terms of a
propagator UZE(¢), which obeys

QUZE(t) - (Ls+ LE)UF (1) =0, UF(0) =1, (6.1)

where I is the identity operator. The solution of the initial value problem for
(4.14) is then

4 ra o
g**(1,2; 1) =f0df UB(r)LEE (1, =) fP(2; t—1)

+Uf(1)g* (1, 2; 0), (6.2)

where g®#(1, 2; 0) is the (given) initial condition for the correlation function.
Substituting this result into the last term of (4.11), we obtain

t ’q, a raf ra
K= Zfdzj;d"' leﬂUlzﬂ("')LuB (1§ t—’")fﬂ(z; = "')
8

+ X [d2 LU ()8 (1, 2; 0). (6.3)
B

This equation is formally exact (within the weak coupling approximation)
and yields a closed equation for f*(1; ¢). It is called the master equation and
was originally derived (in a more general context) by Prigogine and Résibois
(1961). This equation has some quite unfamiliar properties. A striking feature
is its non-Markovian character. It is an integro-differential equation in time;
hence, the rate of change 9, f*(1; t) at time ¢ depends on the integral of
f2(1; t— 1) over the whole past history. Such a structure cannot be expected
to lead to the familiar macroscopic equations of hydrodynamics or elec-
trodynamics, which are all Markovian. Moreover, the second term is very
strange: it implies that the rate of change at time ¢t of f*(1; t) depends on the
initial value of the correlations, i.e. on the initial preparation of the system. In
order to get out of these difficulties, we must exploit more thoroughly the
physics of the problem and disentangle the relevant features from the less
relevant ones.
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We first note that the two-body propagator Ugf(r) relates to the unper-
turbed motion of independent particles. It is well known (or easily checked)
that this quantity factorizes as

U (1) = U (1) U (1), (6.4)
where the one-particle propagator satisfies the simpler Liouville equation
Q.Ur(r) = LU (¢). (6.5)

Next, we note that the determination of the propagator is equivalent to the
solution of the equations of motion of a single particle. Indeed, the Liouville
theorem asserts that the phase space density at time ¢, at the point (g, v), is
the same as the density at time 0, at the point where the particle was at time

(—1t):
UP (1) f*(q1, 015 0) = f%(q1, 015 1) =f*(q1(—1), v,(—1); 0), (6.6)

where g(—t) obeys the “backward” equation of motion,

§(—1)=—[q(-1), H] = [H, (- 1)] (6.7)
with the initial condition
q(0)=¢ (6.8)

and similar equations for v(—¢). But we know from the discussion in chapter
1 that even this one-particle problem is, in general, very difficult in the
presence of inhomogeneous external fields. The feature that saves us and leads
to the derivation of an explicit kinetic equation is the fact that in a plasma
there exist several characteristic time- and length-scales and that these scales
may be widely separated, at least in some cases. In order to discuss these, we
must formulate a certain number of intuitive, qualitative statements or antic-
ipations, which must be checked a posteriori.

We have already mentioned in section 2.4 that the correlation function
introduces a characteristic length, the range of correlation r,,, defined by the
fact that g*# = 0 whenever the relative distance |g, — ¢, | exceeds 7.,. On the
basis of elementary plasma physics (the Debye theory) it can be argued that
I. 1s of the order of the Debye length of species a,

4me2n, \ "'
rca=ADa=( WTG a) ’ (6.9)

a




110 Microscopic description of a plasma [Ch.2

where n, is the number density and T, is the temperature (expressed in energy
units) of species a. To this characteristic length corresponds a characteristic
time, the inverse plasma frequency of species a,

— =1 =
Tca_wPa_(

(6.10)

2 -1/2
4me,n,,
mCl

Next, we consider the range of the interactions: this poses a problem for the
Coulomb forces, which decrease very slowly with distance and can be consid-
ered, for many purposes, to have infinite range. Nevertheless, the elementary
Debye theory tells us that the statistical correlations produce a screening of
these forces for distances larger than Ap,. (This problem is also discussed at
the end of this chapter in Appendix Al). Hence, the effective range of the
interactions can be estimated as being equal to r., as well. It then follows that
7., €stimates the time spent by a typical particle in the sphere of interaction of
another, i.e. the duration of a collision.

An independent characteristic time is provided by the collision term as a
whole. Anticipating the fact that the collisions drive the system towards
equilibrium, the collision term can be, very roughly speaking, represented as

el ta (6.11)

Ta

We thus introduce the relaxation time 1, of species a, which may be defined as
the time over which the distribution function f* undergoes a significant
change under the effect of the collisions. It will be determined more precisely
in chapter 4. Associated with it is the mean free path of species a, defined as

>‘mfpa = VTaTa’ (612)

where V., is the thermal velocity of species a,

2T\
Vi = ( m“) . (6.13)

A third, independent characteristic length is associated with the spatial
variation of the macroscopic quantities of the system (density, temperature, .. .),
of the electric and magnetic fields, and also of the distribution function itself.
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Assuming that all these lengths are of the same order, we define Ly, the
gradient length scale, or hydrodynamic length, as

-1
1|04
LH—(Z‘W‘) , (6.14)

where A is any one of the above mentioned quantities. We also define a
hydrodynamic time as

The = L/ Vra- (6-15)

Last, but not least, there is a time scale defined by the Larmor frequency,

TBa = |9a|_l=ﬁ, (6.16)

and, corresponding to it, a length scale defined by the Larmor radius:
PrLa= VTaTBa' (6’17)

The order relations between these scales determines various regimes of
evolution. The most familiar one is characterized as follows. The gradient scale
length Ly is a macroscopic quantity, typically measured in meters, centime-
ters,...; it is produced by a macroscopic preparation of the system. At the
other extreme, the range of the correlations or of the interactions, r,,, is a
purely microscopic quantity. For a neutral gas, it is of the order of the size of a
molecule, i.e. a few &ngstroms. For a plasma, the Debye length can be much
larger, depending on the density and the temperature. For laboratory systems
(such as a thermonuclear plasma) it does not exceed 10~ cm. As for the mean
free path, it is always much longer than the range of the interactions, provided
the plasma is weakly coupled; but its relation to the hydrodynamic length is
much more variable. In neutral, not too dilute gases, one has Ly > A ... But
in a plasma at high temperature, the mean free path may easily become as
large as several meters. ‘

In conclusion, we may assume the following relationships as representing
typical situations in a weakly coupled plasma:

rca <<Amfpa SL]-I’ (6.18)
together with

Tea < Ta < THa- (619)
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Alternatively, we may have

4
Fea < LH < Amfpa’ (620)

together with
Tea < THa < Ta- (6.21)

Considering now the magnetic effects, we assume that the magnetic field is
sufficiently small in order to ensure the conditions *

12,0, <1, —==<I1. (6.22)

PrLa

It may be useful to note that this condition can be satisfied in practice even
with very strong magnetic fields, such that

LH Amfpa

>1,

> 1. 6.23
PLa PLa ( )

It should be realized that the first of these conditions precisely defines the
applicability of the drift approximation, (1.5.26). Forgetting now the details of
the rough estimation of the various quantities, we only retain the basic
assumptions (6.18)—(6.22) and make the best use of them in deriving an
expression for the collision operator.

In kinetic theory, we are mainly interested in the approach to equilibrium.
This process takes place on the characteristic time scale 7,, which is much
longer than the duration of the collisions, 1.,. We therefore decide to study the
evolution by “smoothing out” the details of the motion that arise on the short
time scale 1_,. The resulting “smooth”, or “asymptotic” evolution law will be
an appropriate description of the phenomena, whenever we are not interested
in short-living transient processes. (Note that a similar philosophy underlies
the description of the particle motion in the drift approximation; see, in
particular, fig. 1.5.4))

The details of the calculations involved in the implementation of these ideas
are given in Appendix Al. The result of this treatment is certainly familiar to

* In reality, condition (6.22) may be somewhat marginal in some large modern tokamaks.
Kinetic equations describing “magnetized collisions” have been derived by several authors (see
Appendix Al); but this problem will not be studied in this book.
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many readers: it is the explicit form of the kinetic equation (4.15), in the weak
coupling approximation,

) L9
X = §2we2e§ In Afdv2 malmG”(g)

L9 L3 )
(et = o | ot O i ). (629

Here, we use the notation g for the relative velocity vector,
g=0 -0, (6.25)

The important Landau tensor G,,(a) is defined, for an arbitrary vector a, as

2
S —
G, (a) = Lo G (6.26)
a
Finally, the Coulomb logarithm, In A, is defined as
(T, + T)A
mA=m1LL4l2. (6.27)

Ze?

Equation (6.24) represents the celebrated Landau collision term, that pro-
vides the basis of most of the existing works on plasma transport theory. It
was first obtained by Landau (1936) from the Boltzmann equation of the
kinetic theory of gases, combined with the weak coupling assumption. It has
been later derived more rigourously by many authors (Bogoliubov 1946,
Balescu 1963, 1975, Klimontovich 1964, 1982) and its properties are discussed
in many textbooks on plasma physics (e.g. Montgomery and Tidman 1964,
Ichimaru 1974, Krall and Trivelpiece 1986, Golant et al. 1980, Rosenbluth and
Sagdeev 1983).

The derivation given in Appendix Al is intended to pinpoint the steps at
which specific assumptions come in. This will help the reader in modifying the
kinetic equation whenever some of these assumptions break down.

A fundamental result of this section is the fact that the collision operator
X'® appears as an operator acting on f%(g, v; ¢), i.e. a functional of the
distribution function at time ¢. We have thus proved the existence of a kinetic
regime, as announced in (4.15). It appears as an asymptotic regime, valid for
times much longer than the duration of a collision. A fuller discussion of the
more fundamental aspects of this question can be found in the book by
Balescu (1975). For our more restricted purpose, the main point is the
existence of a closed kinetic equation for f*: egs. (4.15) and (6.24).
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2.7. Conservation properties of the collision term

In the present section we derive some fundamental properties of the Landau
collision term (and, for that matter, of any acceptable collision term). For this
discussion, we need to introduce two lemmas which, although elementary,
provide us with some of the most frequently used tools in transport theory.

Till now, we have not yet made any specific assumption about the class of
functions to which we must restrict the distribution functions f%(q, v; t). We
do not wish to go into sophisticated mathematical discussions at this point;
but some simple conditions must be met in order to give a meaning to the
forthcoming operations. These conditions originate from the fact that the
distribution function is an intermediate quantity in the definition (1.16) of the
observable quantities as averages of microscopic dynamical functions. For this
definition to make sense, it must be required that the integrals converge. The
behaviour of f*(q, v; t) as a function of the position depends on the type of
boundary conditions in the physical space (e.g. the presence or absence of a
material wall): no general statements can be made. This point will be dis-
cussed again in section 3.1. As for the velocity variable v, it is clear that each
component v, may vary between — oo and + oo (in a non-relativistic theory!).
Therefore, an acceptable distribution function must decrease at infinity (as a
function of v,, v,, v,) sufficiently fast, in order to ensure the existence of all
averages of physical interest. In practice, a decrease of exponential type at
infinity meets all the requirements. From this condition, our two lemmas
follow immediately:

Lemma A. 1f A(v) is any function of v, growing not faster than a polynomial
at infinity, we have

[ao aiUr[A(v)f"f(q, v; 1)] =0. (7.1)

Lemma B. If A’(v) is a function of the same type as A(v), we have the
important formula of integration by parts:

\ /dvA'(v)aiUr[A(v)f"(q, v; 1)] = —/dvf”(q, v; t)A(v)aiUrA'(v).
(7.2)

(Actually, lemma A is but a particular case of lemma B)..
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We now consider the Landau collision term X", defined by (6.24): it is a
non-linear operator acting on the distribution functions. More precisely, the
non-linearity is quadratic: this means that binary collisions are by far domi-
nant over three- or more-particle collisions. In this case, the collision term can
be naturally decomposed as

xe= Y Ak ‘ (7.3)
B=ei

where #"*# represents the contribution to the kinetic equation of species a of
the collisions of a particle of species a with a particle of species 8. Clearly, the
term 2"*? is a functional of the product fef”.

The collision operator possesses a few properties that are easily understan-
dable. In any collision process, the number of particles of each species, the total
momentum and the total energy must be locally conserved. In particular, in a
binary elastic collision, any amount of momentum and of energy lost by one
of the partners at a given point must be gained by the other partner at the
same point. Hence, the average number of electrons, the average number of
ions, the average total momentum and the average total energy cannot change
in time as a result of the collisions. These conservation laws are expressed by
the following equations:

Jav =0, a=e,i, | (7.4)
Zma/dvv,l"’=0, r=1,2,3, (7.5)
Y im, / do v2#* = 0. (7.6)

These relations must hold independently of the form of the distribution functions
f% involved in the collision term.

The proof of the number conservation property (7.4) is a trivial conse-
quence of lemma A (7.1).
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In order to prove the second property (7.5), we write the collision term in a
more symmetric form,

faﬁ:Aa,devZ(m;l alm_m[;l aZm)Gmn(g)(m;l aln_'nﬁ—1 aZn)

xf*(1)f4(2), (7.7)
with
Agp=2melefin A,  f(1)=f%(qy, v;; ).

Clearly, the added term, starting with m;,?l d,,, in the integrand is identically
zero, because of lemma A (7.1). Next, we note that the integrand is symmetric
under the permutation of the subscripts 1 and 2, together with a and B.
Therefore, we may evaluate the expression in (7.5) as

%:fdv mpy, K
- %Aaﬁfdvlfdvz mpy, (M5! 8y, —mz' 8,,,)G,n(g)
X(m3! 8y, —mp" 3,,) f*(1) f4(2)
=1L T4 J v [dvy(mapy, +mgoy, ) (m3 81— 15" 831) Gron(8)
X (mz' 8y, —mz' 3,,)f*(1) f2(2)
- _%E;%Aaﬁfdvlfd%(b‘mr8,,,,)Gm(g)

X (3" 04— m3! 8,) (1) fA(2) =0

The last step is obtained by an integration by parts.
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The third theorem, (7.6), is proved by using the same symmetrization
procedure:

Z/dv Implxe
— ¥ oy o [0 3(md + mpd) (ms By 3" B0 ) o)
« B

210, —mp" 8,,)f* (1) fA(2)

x (m
- -1y %Aaﬁfdvlfdvz(vlm = 03,,) G, (8)

X (m;1 aln - m,El aZn)fa(l)fB(2)=O

The conclusion follows from the very simple and useful property of the
Landau tensor G, ,(a) (eq. 6.26), together with (6.25),

G,.(a)a,=a,G, . (a)=0. (7.8)

We have thus proved that the Landau collision operator possesses the
necessary conservation properties required from a collision operator. It is clear
that the form of the distribution functions was not used in proving the
conservation laws: these are valid, irrespective of the particular state of the
plasma.

It is important to note that some more detailed statements can be proved.
Representation (7.3) shows that the collision term ™ for particles of species
a is a sum of two terms, representing, respectively, like-particle collisions
(B =a), and unlike-particle collisions (B+ a). A simple adaptation of the
previous calculations leads to the result that like-particle collisions separately
conserve the number, momentum and energy of the particles of species a. Thus

fdvl K=, a=e,i, (7.9)
mafdvl v, =0, a=ei, r=1,2,3, (7.10)

%mmfdv1 VvIH**=0, a=e,]i. (7.11)
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Combining these individual conservation laws with the global ones of egs.
(7.4)-(7.6), we obtain the following properties of the unlike-particle collision
operators.

fdvl X = fdul Xie=0, (7.12)
f dv, mp,, XS = — f do, my,, X, (7.13)
fdvl ImpiHe = —fdvl Impixe, (7.14)

The importance of these properties for the transport theory will appear
clearly in chapter 3.

Another general property of the collision operator is the celebrated H-theo-
rem. In view of its particular role in transport theory, a special chapter is
devoted to its study (chapter 6; see also chapter 17).

2.8 The “Lorentz process”

The Landau collision term has a very nice, symmetric form (7.7). The great
symmetry between electrons and ions is, however, misleading. Indeed, the
large disparity in mass between the two components, expressed by (1.2), leads
to a very different behaviour of the electrons and ions in the collision
processes. It is useful to exploit this fact as early as possible in the game: this
will lead to substantial simplifications in the forthcoming calculations. The
first author who introduced this idea was Braginskii (1965); many others
followed him later. Silin (1971) gave a slightly different (but equivalent)
version of the method, which we essentially follow here *.

The basic idea consists of noting that, because of their very large mass, the
ions have, on the average, velocities much smaller than the electrons. In a
rough approximation, one would conceive of the plasma as a collection of
electrons moving among, and colliding with a set of infinitely heavy, sta-
tionary ions. This picture corresponds to the so-called Lorentz gas, a model
often studied in the kinetic theory of gases (Lorentz 1905, Sommerfeld 1952,
Chapman and Cowling 1952, Balescu 1963, Delcroix 1966). This extreme

* Some of the average quantities, such as the average velocities u®, the temperatures 7, and
the pressure tensors «“, appearing in this section, will only be defined systematically in chapter 3.
Nevertheless, we prefer to discuss these matters in the present chapter, to which they logically
belong. Some (well-known) definitions will thus be anticipated. )
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picture is often too crude for the purpose of transport theory *. It can be
taken, however, as a starting point for a kind of ““perturbation expansion”: we
propose to call this expansion the Lorentz process, as it takes the Lorentz gas
as a reference point.

The Lorentz process concerns only the unlike-particle collisions: in the collision
terms X%, the two collision partners are identical, and the Lorentz model is
inapplicable.

We begin our analysis with the electron—ion collision term, which we rewrite
as

i 27Z%"In A i
X = ‘—‘_"_mz alr ¢r Py (8'1)
with
O = [dv, Gu(y = 12) (31— 1 3. ) f*(01) (). (8.2)

The parameter p is the mass ratio defined in (1.2). In these formulae we omit
writing the arguments (¢, ¢) in the distribution functions, because they are
irrelevant here. Consider now the tensor

(1~ 1,) = G,[(0r —u°) — (v, ~w)], (8.3)

where u° represents the average velocity of the electrons. Note that v, is an
electron velocity and v, is an ion velocity.

The distribution function of the ions and of the electrons are schematically
shown in fig. 8.1. The ion velocity distribution function is very sharply peaked
around the average ion velocity u'; its width is of order (3T,/m;)!/%. On the
contrary, the electron distribution function, centred around u°, is much more
widely spread out. Thus, on the average,

<|vl—u°|2> 53-,:—1,

(lo =) (-t =35 s

* The Lorentz gas model turns out to play a quite important role in the transport theory of
magnetically confined plasmas, for some specific reasons which will appear in chapters 11 and 14.
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U ue v

Fig. 8.1. Shape of the ion and electron distribution functions (schematic).

where
ui=u—u'. (8.4)
We then see that, if we assume
. T \12
o —= ‘ 8.5
it (3] (85)
and also
T. m; 1
=K —=ph 8.6
T, = m, B (8.6)

then, over most of the effective range of the variables (determined by the
width of the distribution functions), we may consider that

|oy — [ > [0, —u. (8.7)

Condition (8.5) says that the relative average velocity (which is related to
the electric current) should be small compared to the thermal velocity. The
second condition (8.6) can be easily satisfied over a wide range of ion
temperatures, both smaller and larger than T, because p~! is a very large
number.

Our conclusion (8.7) then suggests that if the Landau tensor G, in eq. (8.3)
1s expanded in a Taylor series, the latter can be truncated after a finite number
of terms:

Gr:(vl - ue_v2 +ue)
= Grs(vl - ue) - (U2n - u:) aln Gr:(vl - ue)

+%(U2n - urel)(vlm—' uren) a1n 81m Gr:(vl - ue) +oee (8'8)
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This result is now substituted into (8.2),
o = [do{ f(0:)[31.7°(21)] — 1S *(0)[8,,f ()] }

X [Grs(l) - (UZn - uil - uzi)alnGrs(l) + - ]’ (89)
where
Grs(l) = Grs(vl - ue)
e|? e e
_ |1.71 —u | 8rs_(U1r_ur)(Uls_us)

|"1""e|3

(8.10)

In the form (8.9) the integrations over the velocity v, are easily performed, by
using the definition of the moments, collected in table 3.2.1. The result is

Q:i = ni[Grs(l) + u:i aln Grs(l)

+ %anm aln almGrs(l) + - ] alsfe(vl)

_H'ni[alsGrs(]‘) + - ]fe(vl) (8‘11)
where
a,,=—38 + o+ U UG, (8.12)
m-: nm:

1 1 1

Equation (8.11), combined with eg. (8.1), is the expression of the electron—ion
collision operator in the “Lorentz approximation”.

The interesting feature of this equation is its insensitivity to the details of
the ion distribution function. The latter enters only through a few moments of
low order (n;, u', T, =, ,). Successive approximations in the series contain
increasing powers of the mass ratio p. For consistency with our neglect of
terms of order u, we could actually drop the last term of (8.11) and the last
two terms of (8.12). We do keep them, however, in order to show (in section
4.5) that some important collisional quantities are small, of order p.

We now turn to the ion—electron collision operator:

_27Z%*In A

2
m,

X o, o (8.13)
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with

@} = [dv, Gyy(01 = 0)[1f*(0) By f (01) = (1) B2 *(22)].
(8.14)

We may again apply the Lorentz process, but now it is the (unintegrated)
velocity v, which is small. Hence, we write instead of (8.8),

G, (v, — 4 — v, +u°)
= G,(2) = (v, — u7) 3,,G,,(2)
+3(0 —up) (01— up) 3y, 05,6, (2) + -, (8.15)

where

G,(2) = G,(—v, +4°) = G, (v, ~ u°). | (8.16)
Substituting this expansion into (8.14) we find

@°= —L.f () + M, (01, —u — u') [ (01)

= IV (010 = = 7 )01, — = uZ ) [ (00) + -

+ul L, 8, f (o) + -], (8.17)

where the coefficients are functionals of the electron distribution function,
defined as

L= [dv, G, ()30,/*(0), M,,= [d0,[8,,G..(2)]3,.1°(2y),

A

Nrnm = deZ[BZnBZMGrs(z)] aZsfe(UZ)’ Lrs = deZ Grs(z)fe(UZ)
(8.18)

Note that these coefficients are not simple moments of the electron distribu-
tion function: their evaluation requires a detailed information about this
function.

Equations (8.1), (8.11), (8.13) and (8.17) represent the electron—ion and the
ion—electron collision operators in the “Lorentz approximation”. The illusory
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symmetry between ions and electrons has now vanished! It is not difficult to
check that the important relations (7.4)—(7.6), which ensure the conservation
of the total momentum and of the total energy, are preserved in this ap-
proximation.

Appendix 2A4.1. Derivation of the collision term

Our starting point is the formally exact expression (6.3) of the collision term.
We assume that the effect of the external electric field is negligible in our
problem. (More precisely, the electric field produces a negligible acceleration
of the particles over the duration of a collision, 7.,). From the condition
Ly > r.,, we conclude that the magnetic field is practically constant over a

ca’

distance r.,. We may therefore evaluate the propagator locally, by using the
solution (1.5.6)-(1.5.9) for a constant field B (pointing in the z-direction).
Expressing this solution in Cartesian coordinates we find, for any function F*°,

U*(t)F*(qy» 4y» 4z s Uy, )
= F*(g.(~1), g,(~1), ¢.(—1), v(=1), v,(—1), 0,(—1))
=F°(qx — 2., (cos 2,1 —1) — 2", sin 2,1,

q,+ 27, (cos 2,t —1) — ;' sin .1, ¢, — v,¢

zts

v, cos £,t~v, sin 2,¢, v, cos 2,1+ v, sin 2,1, Uz). (A1.1)

Consider now the last term in eq. (6.3). We make a change of variables by
using, instead of the positions ¢;, ¢, the position ¢, and the distance from 1:
r=gq, — q,. We then write

T [ LU () Uf (1) g (4, . 01, 053 0)
B
= Zfdz L’lgﬂgaﬂ ql(_t)7 qlx(_t) - q2x(_t)7 qu(_t) - q2y(_t),

q1. = 42, — (01, — 03,)1, 01(—1), 0, (—1); 0)~
(A1.2)
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We note that, because of the peculiar motion in the magnetic field, the
relative distance in the x- and y-directions remains bounded for all times,
whereas the distance in the z-direction increases linearly in time. This implies
that, after a time

[ — = —— =T

the relative distance of the particles in the parallel direction becomes larger
than the range of the correlations, and therefore,

Usf(t)g*¥(1,2;0)=0 for t>1,. (A1.3)
Thus, the influence of the initial correlations on the evolution process only lasts
for a time of order 7_,. Let us call 7, the longest one of the two times (7., 7;)
and r, the corresponding correlation range:

TCEMax(Tce’ Tci)s rcEMax(rces rci)' . (A14)

From here on, we decide that we are only interested in the study of the
evolution over a time scale much longer than 7.,

t> 1., (A1.5)

We are then justified in neglecting the last term of (6.3).
The same physical idea helps in evaluating the remaining term in that
equation, although the argument is more elaborate. We first note that, up to

terms of higher order in V*# (which are negligible in the weak coupling
approximation), f%(1; ¢ — 1) can be expressed in that term as

Q5 =)= U (=7)f*(; 1).

Hence, going over to the relative spatial coordinates as before, and using (6.4),
(6.6) and the group property Uy'(7)Uy(—7) = I, we find

= %fduzfdrfo‘df m719, - [vVE(r)|[v Ve (r(=1))]

x[Ur(rym;* 8,Ur(—1)

— Uf(r)mz" LUE(—)] £*(1; 1) F2(2; 1). (A1.6)
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We note that the factor ¥*#(r) differs from zero only when r < r.; moreover,
for given r, V*A(r(—r)) differs from zero only ‘when 7 <17, [by the same
argument as in eq. (Al.3)]. This means that only the range of values 0 <r <r,
and 0 <t <T_ contributes effectively to the integrals in 2 “. With this in mind,

we evaluate the following expression, taking care with the non-commutation of
U and 9,,

Up(r) U8 (—7)f*(1; 1)

= {ex[ﬂa_l sin 2,7 v, + 2, (cos ,7-1) v,
+ cos Q,7 8, — sin .7 3, ]

X

+ey[52;1 sin 2,7 v, — 2, '(cos 2,7 -1) v
+cos 2,7 3, + sin 2,7 9,
+b(7 9, +3)}*(1; 1)

=3, +7v)f(1; 1) + O(R.1.). (A1.7)

The last line is obtained by noting that, within the relevant domain, 0 <7 <1,
and because of our assumption (6.22), the complete expression can be lin-
earized. The remaining two terms are of quite different order of magnitude, as
follows from the obvious estimate

Tlv—flzi<<1' (A1.8)

|3/ | TH
Hence, under our assumptions, the whole expression (Al.7) reduces to

9, f%(1; o).

The same argument (6.22) justifies the linear approximation
VeP(gi(=7) — ax(—7)) = V°E(r —gr) + O(Q.r.), (AL9)
where we introduced the relative velocity

g=v—v. (A1.10)
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A final important simplification occurs in considering the localization of the
two distribution functions of the integrand in (Al.6):

fo(1; 0)f5(2; 1)
=f%(g1> o )P (g1 +7, 035 1)
= (g1 o;; D[ Pqr, s ) +rov P o 1) + -]
= (g1, 01; 1)f*(q1, va; 1)[1+O(r./Ly)]. (A1.11)

Collecting now all these simplifications, we reduce the collision term (A1.6) to
the form

X = Xﬁ:fdvzfdrfowd'r mJ! 81-{[VV"‘B(r)] [VV"‘B(r,—gT)]}

X(mzl 3, _mEI az)fa(‘ll, vi; 1) fPq, v; 1), (A1.12)

or, more briefly,
o0
A= dv, [dr[ dr m]!09,T°F
L [anfar[ar m:* 8, T(s)

X (m7' 8y, — mz' 0y,) (g1, 015 ) 1P (g1, 03 1), (A1.13)

in which the tensor T*A(g) is defined by comparison with (A1.12). The
domain of integration over 7 has been extended to infinity: this is admissible,
because as soon as 7> 1., the integrand in the added interval ¢ <7 < 00 is
practically zero.

"We note that, up to terms of order (r./Ly) and (r./p.), the effects of the
spatial inhomogeneities and of the external field have been eliminated from
the collision term. One important consequence is that the dependence on r
and on 7 is now confined to the potential energy factors (and has disappeared
from the distribution functions). This is a considerable simplification in the
structure of the kinetic equation: the integrations over » and T can be
performed independently of the distribution functions. For this purpose, it is



2A.1) Derivation of the collision term 127

useful to introduce the Fourier representation of the interaction potential,
VeE(r) =fdk exp(ik - r) V*8(k). (A1.14)

In the special case of the Coulomb potential (4.2),

1 %

Veh(k) = . Al.15
(k)= 55— (AL15)
It is easily checked that

VeB(k) = V*P(—k)=V(k). (A1.16)

The integrations in the tensor T.*%(g) are now easily performed. (We provi-
sionally drop all the superscripts a, 8):

T(g)= fdrfowd'r[VV(r)] [vV(r-gr)]

=fdrf0wd'rfdkfdk'
xexp[i(k+k’)-r—ik’-gr]|(ik)(ik’ )V (k)V (k")

- (21r)3f0wdrfdk KV (k) exp(ik - gr)

=8'rr4fdk kkV2(k)8(k-g). (A1.17)

This can be further integrated, by first choosing a reference frame in which the
vector g points along the z-axis, and using spherical coordinates in this frame

T(g)= 87r4f0wdk k4I72(k)f_11d cos 0/02qu>

sinf cosq)(sind cos o
X8(kgcos8)|sinf sing ||sinfd sing
cos 4 cos 8

=(I—e.e,)T. (A1.18)
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Indeed, all non-diagonal terms vanish, and so does the diagonal z—z element,
because of the 8-function. The scalar 74 is

70 = T =8 [ dk k4 [PoA(k))* [ du(1 - 1?)8(kgn)
) -1

A
=, A1.19
. ( )
with
- f°°dk K3 [7of (k)] (A1.20)
0

The tensor T*# can now be evaluated in an arbitrary reference frame, in which
its components are

T8(g) = ( g;_fs.), ~ (A1.21)

We reach the very remarkable conclusion that, for a weakly coupled system,
the nature of the interaction potential enters the collision operator only through
the constant A g

If we now substitute the Coulomb potential (A1.15) into (A1.20), we meet
with a well-known difficulty:

A = 2mele] [dk (k*/k*) = 2melef {In k). (A1.22)

The integral diverges logarithmically at both limits. There is a rather obvious
explanation for this difficulty.

(a) The divergence for large k corresponds to a divergence for small
distances. Clearly, for very close encounters, the assumption of weak coupling
breaks down.

(b) The small-k divergence corresponds to large distances. It is well-known
that the Coulomb potential falls off very slowly; as a result, at large distances,
a given particle 1 feels the effect of its “binary-collision partner” 2, but also of
many others, located at comparable distances. Thus, because of the long range
of the Coulomb potential, it is the binary-collision approximation, incorporated
in eq. (4.14), that breaks down.

Problem b has been solved rigourously. The idea is to introduce collective
effects into the description: This is realized by using the more complete
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equation (4.13), rather than (4.14), for the elimination of the correlation
function. We cannot go here into the details of the calculation (Balescu 1960,
1963, 1975, Lenard 1960), but we can give the final result, which is remarkably
simple. It consists of replacing the tensor T*# in (A1.17) by

[78 (k)]

TP =8z {dk kk (k- g) ——————
i =8a e e) e ko)

(A1.23)

where e(k, k- v) is the complex dielectric function, well known from the theory
of the linearized Vlasov equation

1
kev,—in

4me}
ep) = A .3 FB(2-
e(k, k+v) 1+§mﬁk2 fdu2 o k-3, /P(2; 1),

(A1.24)

where 7 is an infinitesimal positive number.

This equation shows that the main effect of the collective interactions is to
build up a “dynamical polarization” that screens off the long-range Coulomb
potential. This screening is a self-consistent effect, as seen from (Al.24), where
the dielectric function is evaluated with the instantaneous distribution func-
tion. As a result the Balescu-Lenard collision term, which is obtained by
combining (A1.23) with (A1.13), is a highly non-linear equation in f“, as
should be expected for a many-body process. A rough, but often sufficient
approximation results from evaluating the dielectric function with a Maxwel-
lian distribution function and taking its static (v=0) limit. The resulting
effective potential ¥*# /e is then the familiar Debye potential VF(k),

VaP(k)=—£ 1 __ (A1.25)
27% k2 +kd
where kp is the inverse Debye length,
kp=Ap', (A1.26)
with A defined by (4.8). The inverse transform of the potential is:
o exp(=xpr)
VEP(r)=eep ————. (A1.27)

r

With the Debye potential, the convergence of (A1.10) is ensured at large r
(or small k). However, we still have the problem of the short-distance
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behaviour. In order to tackle this problem, one should use the complete
equation (4.12) for the correlations; but this leads to untractable mathematical
difficulties. The problem is therefore usually treated in a pragmatic way, by
introducing an upper cut-off at a value k = «,,, in the integral (A1.20). As the
divergence is logarithmic, the result is not very sensitive to the exact choice of

ma- On a physical basis, one chooses for K, the inverse distance of closest
approach, at which a collision produces a 90 ° deflection. This turns out to be

3T,
Krfa = eza . (A1.28)

o

In conclusion, we evaluate the constant 4,5 in (A1.20) as

K2 K2, + K3
=8 dk K[V (k)| = mele}| —2— —1 +In2L—2
aB wf [ ( )] A x12w+x]2) Klz)

This result can be further simplified, on the basis that ky, > xD, as a result,
one only retains the leading, logarithmic term

A,p=2melef In A

in agreement with eq. (6.24) in the main text. In order to have a unique value
for all couples of particles (e—e, e—i, i—1) we introduced an averaging over the
species (Trubnikov 1965) in defining the unique Coulomb logarithm (6.27).
Some authors (e.g. Braginskii (1965) consider semi-empirical corrections to
In A under various conditions of temperature and density; we do not discuss
these minor points here.
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The macroscopic description of a plasma

3.1. Local distribution functions

In kinetic theory, as shown in chapter 2, the statistical state of the quiescent
plasma at the microscopic level is completely defined by the specification of
the (one-particle) distribution functions f%(q, v; t), (a=¢,1). Their precise
interpretation is the following: f*(g, v; t) dg dv is the number of particles of
species  a located, at time ¢, in a volume element of size
dg, dg, dq, dv, dv, dv, centred around the point of coordinates ¢, v in the
six-dimensionzl phase space; g denotes the position coordinate of the particle
and v its velocity.

The qualification quiescent denotes a plasma which is not turbulent. In the
latter case, the distribution functions do not provide a complete description of
the plasma. This case will be treated in Part III of this work.

Before proceeding, we define precisely some concepts which are of great
importance in transport theory.

A system is said to be homogeneous (or spatially uniform) when all its local
properties are the same at all points in space. In other words, a homogeneous
system is invariant under spatial translations. 1t is then easily shown that the
one-particle distribution functions f“(g, v; ) must be independent of the
coordinate ¢ of the particle. They can then always be written in the form

f(q, v; t)=n, ¢%(v; t). [HOM] (1.1)

Here n, denotes the (constant) number density of the particles of species a,
Ne=—. [HOM] (1.2)

Remember that a real plasma is always globally neutral (see eq. 2.1.3), i.e.
the fotal negative charge of the electrons compensates the total positive charge
of the ions,

N.=ZN,. (1.3)
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For a homogeneous system, egs. (1.2) and (1.3) imply that the plasma is also
locally neutral, i.e. the charge compensation holds at each point:

n,=Zn, [HOM] (1.4)

The function ¢*(v; ¢) in (1.1) is the velocity distribution of the particles of
species a. From (2.2.19) and (1.1) follows the normalization

fdv ¢*(v; 1) =1. (1.5)

If the system is not only homogeneous, but also isotropic in velocity space,
the velocity distribution function only depends on the length of the vector v:

e (v; t) =¢%(v; 1). [ISOTR] (1.6)

Finally, the system is said to be in a stationary (or steady) state whenever
its distribution functions are independent of time.

We have recalled in section 2.1 [see also Balescu (1975)] that to each
microscopic dynamical function b%(g, v; x) corresponds a macroscopic dy-
namical function B°(x, 1), obtained by the process of statistical averaging,

B%(x, t) =qu dob*(q, v; x)f*(q, v; t). (1.7)

Here b°(g, v, x) denotes any function defined on the phase space, i.e. any
function of position ¢ and of velocity v of a point-particle of species a. This
function may depend, moreover, parametrically on the variable x which
denotes the coordinates of a (geometrical) point in the three-dimensional
physical space. In other words, x is not to be considered as a coordinate of the
phase space. The macroscopic dynamical functions are, generally speaking,
fields, i.e. quantities defined locally at each point x of the physical space and
at each time ¢.

Equation (1.7) provides the basic link between microscopic and macro-
scopic physics. This general relation takes a simpler form when applied to a
special class of dynamical functions of particular interest in hydrodynamics
and electrodynamics. The quantities which enter the latter domains of physics
are all of the nature of local densities (e.g. mass or charge densities, momen-
tum or electrical current densities, etc.). To such macroscopic densities corre-
spond microscopic phase space functions which have a common characteristic
structure:

b*(g, v; x) = B*(v) 8(g —x). (1.8)
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In order to understand this formula, consider the simple case of the mass
density p(x, ?), defined macroscopically as the ratio of the mass contained in
a region centered around x, to the volume V of this region, in the limit as
V — 0. In order to translate this definition to the microscopic, discontinuous
world, we consider again a region of volume ¥ around point x. If the position
g of a particle is located within this region, the particle (of species a)
contributes a quantity (m,/V) to the density; if it is outside this region, it
contributes zero. As we let the volume V go to zero, we see that the particle
gives a non-vanishing contribution to the density only if its position coincides
exactly with point x; in this case, the contribution (m,/V) is infinite as
¥V — 0. Hence, the microscopic mass density is m, §(q — x), which is indeed of
the form (1.8).

The average of any microscopic local density of the form (1.8) is given,
through (1.7), by

B%(x, t)=fdv,3"(v) f*(v; x, ). (1.9)

For all quantities of the form (1.8), the non-trivial part of the averaging
concerns only the velocity space. The distribution function f%(g, v; t) has
been transformed in this process into a local velocity distribution function,

f4(v; x, t)=qu 8(g—x) f*(q, v; 1), (1.10)

which depends parametrically on the physical space and time coordinates:
(x, t). It may be said that f*(v; x, t) is a functional field: to each point in
space and to each time it assigns a function of v. Although the difference
between ordinary and localized distribution functions may seem trivial in this
case, it is worth insisting on their different nature *. We will see later that the
“localization” is not always expressed as simply as in (1.10).

Remembering the discussion at the beginning of section 2.7, we now see
that, for the calculation of any macroscopic density, the averaging over the
position g is trivial. As a result, we do not have to worry about the behaviour
of f%(g, v; t) at the boundary of the plasma. This agrees with the idea that, for
a very large system, the local microscopic state is not influenced by the

* It would be appropriate to use different notations for the ordinary distribution functions
[e.g. f*(g, ©; 1)] and for the local distribution functions [e.g. f*(v; x, t)]. However, we prefer not
to burden the notations, especially because bars and tildas will be necessarily used later on with a
different meaning. The enumeration of the variables, their position to the left or to the right of the
semicolon, or simply the context will clearly indicate the type of the distribution function.
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boundary. This is a fundamental concept of statistical mechanics, connected to
the thermodynamic limit. A detailed discussion is found in the book by Balescu
(1975).

Note that the influence of the boundaries is transferred to the macroscopic
problem, i.e. to the solution of the differential equations governing the
macroscopic fields describing the plasma.

To summarize this discussion, we note that the local densities of interest in
hydrodynamics and in electrodynamics are expressed by (1.9) as averages in
velocity space, evaluated with the local distribution functions f*(v; x, t).

3.2. Macroscopic quantities of a plasma

Whenever the dynamical function 8%(v) in (1.8) is a polynomial in the three
components of the velocity, i.e.

53

p0)= X > . a3, o000, | (21)

=0 r,=0r=

with s, +5,+5s;=s, where a;,  are real constant coefficients, the corre-
sponding average will be called a moment (of order s) of the local distribution
function f%(v; x, t). In the remainder of this book, we shall always tacitly
assume that the distribution functions considered in the theory possess mo-
ments of any finite order (see the discussion in section 2.7).

We now discuss the most important moments of transport theory. The
simplest moments are the local number densities of the particles of species a,

n.(x,t) =fdvf"(v; x, t). (2.2)

In a fully ionized plasma (when ionization and recombination processes are
negligible) the number densities n(x, t) are densities of conserved quantities
(which does not mean that they are independent of time!: see section 3.4). In a
homogeneous plasma they reduce to the constants n, defined in (1.2).

The next simplest moment is the average local velocity of the particles of
species a: u*(x, t), defined via the flux of particles of species a, I'*(x, t),

I“(x, )=n,(x, t) u*(x, 1) =fdvvf"(v; x, t). (2.3)

It is clear that the particle fluxes I'* are fundamental quantities for char-
acterizing the efficiency of a plasma confinement device.
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The third quantity of interest is the fofal average kinetic energy density o
the particles of species a, n,(x, t) &,(x, t),

n.(x,t) &(x,t) =%mafdv vif(v; x, t). (2.9)

This quantity, which is the average of a nonlinear function of v, is conveni-
ently split into two terms of different physical meaning. A fluid of particles a,
moving with an average velocity #“(x, t), possesses a macroscopic kinetic
energy density mn(x, t)|u*(x, t)| 2. This, however, does not account for
the total average kinetic energy density. Indeed, the individual particles move
with all possible -velocities. Although the average deviation of the individual
velocities from u#“ vanishes by definition,

fdv[v——u"(x, )] f*(v; x,t)=0, (2.5)

the average of the squared deviation does not. This extra contribution of the
random motion to the total energy density is identified with the internal energy
density (or thermal energy density) of the particles of species a. We thus write

no(x, 1) Eo(x, ) = dmon,(x, 1) |u(x, 1) |2+ n,(x, 1) e4(x, 1),

(2.6)

and we easily derive the definition

n(x, t) e, (x, t)= %mafdv lo—u(x, t)|? f%(v; x, t). (2.7)

It must be stressed at this point that the identification of the internal energy
(of each species) with the quantity » g, defined by (2.7) presupposes that the
average potential energy due to the interaction forces between the particles is
negligible compared to their kinetic energy. In this case, the plasma behaves
thermodynamically as an ideal system. This assumption is justified for quiescent
plasmas of low density and/or high temperature, i.e. when the condition
(2.4.10) of weak coupling is satisfied.

We now introduce two additional, related quantities. It is well known that
in thermodynamic equilibrium there exists a simple relation between the
internal energy density and the (scalar) pressure of an ideal gas: P, = §n¢,. It
will be seen in section 3.4 that this relation holds also in a non-equilibrium
plasma; hence, we identify the pressure of the particles of species o as

P(x,t)= %mafdv lo—u*(x, t)|? f(v; x, t). (2.8)



138 Macroscopic description of a plasma [Ch.3

Another quantity, which is much less orthodox from the thermodynamic
point of view, is the temperature of the particles of species a. The strict notion
of temperature is associated with thermodynamic equilibrium: it is not the
average of a microscopic dynamical function (the idea of temperature of a
single particle is meaningless), but rather a property characterizing globally a
particular equilibrium state of the system [see the discussion in sections 2.2,
2.4 in Balescu (1975)]. It so happens that, for an ideal gas in equilibrium, there
is a well-known relation between the internal energy per particle ¢,, and the
temperature Ta,

ea=3kpT,,  [EQUIL] (2.9)

where kg is the Boltzmann constant. Moreover, in thermodynamic equi-
librium, all the species have the same temperature.

This relation will be modified in two ways. The first one is rather trivial and
is a simple matter of notation. As the temperature will appear in all the
forthcoming formulae in the combination kT, we will spare a lot of space by
introducing a symbol T, defined as :

T, = kyT,. (2.10)

Thus, T, is simply the temperature, measured in energy units (ergs, joules or,
more frequently, electron-volts), rather than in degrees Kelvin.

A bolder extrapolation consists of extending (2.9) out of equilibrium, by
identifying the temperature as 3n,' times the right-hand side of (2.7). The
quantity obtained in this way does not have, in general, the properties of the
thermodynamic temperature. It is merely, up to a factor, an alternative name
for the nonequilibrium internal energy density. We shall follow this universal
practice of plasma physics and define the temperature of the particles of species
a by :

n(x,t) T,(x,1t)= %mafdv lo—u®(x, t)|* f%(v; x, t)

=P (x,1). (2.11)

This concept will be further discussed below.

The moments discussed up to this point are simple and convenient quanti-
ties. The set of quantities n,, u*, T, will be called the plasmadynamical
variables. They constitute the so-called two-fluid description of the plasma,
widely used in many texts (see, e.g. Krall and Trivelpiece 1986, Golant et al.
1980, Rosenbluth and Sagdeev 1983, Chen 1984). But the quantities which are
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most directly observed are those which characterize the hydrodynamical and
electrodynamical state of the plasma. They are combinations of the two-fluid
moments, the former involving the masses of the particles, the latter their
charges. This set of quantities constitutes the so-called one-fluid description of
the plasma.

The mass density of the plasma, p(x, t) is naturally defined as

p(x,t)=Y mn,(x,1). (2.12)

The centre-of-mass velocity (or barycentric velocity) u(x, t), is introduced
through

p(x, ) u(x, t)=Y men(x,t) u*(x, ). (2.13)

The product p(x, t) u(x, t) has the meaning of the toral momentum density of
the plasma.

In a similar way, we define the main electrodynamical moments. The
electrical charge density a(x, t) is given by

o(x, t)=Y en,(x,1t). (2.14)

The electric current density j(x, t) is defined as *

J(x, )= e.n (x, t) u*(x,t). (2.15)

We now come to a subtler point. In order to complete the list of hydrody-
namical and electrodynamical quantities of the plasma, we need to add the
total energy density p(x, t) &(x, t), which is simply obtained from (2.4),

p(x,t) &(x, t)=13p(x, t) u?(x, t)+po(x, t) e(x, t). (2.16)

Because of the nonlinear nature of this definition, the relation between the
global internal energy &(x, ¢) and the separate internal energies of the compo-
nents e,(x, t) [or the temperatures T,(x, t)] is not simple. The reason of the
difficulty is that in the two cases, the reference velocity mp, with respect to
which one defines the “random component” of the velocity v — uy is differ-
ent: uy is the centre-of-mass velocity in &(x, t), whereas it is the average
velocity of the species a in ¢, (x, ).

* In the remainder of this book, the short form “electric current” will be used as a synonym
for the “electric current density”, whenever no confusion is possible.
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In a multicomponent fluid, the total energy density p(x, t) &(x, t) [and
therefore e(x, t)] is the only hydrodynamic quantity of interest, because it is a
conserved quantity. This is not the case for the individual energies €,(x, f),
because the energy can be transferred from one component to another through
the collisions between the molecules of unlike species (see section 2.7). But in
an electron—ion plasma, we meet with a quite peculiar situation, due to the
extreme smallness of the mass ratio p. It will be shown in chapter 4 that the
rate of collisional transfer of energy between 1ons and electrons is extremely
slow. As a result, the individual component energies e, appear as guasi-con-
served quantities. The plasma tends to relax towards a quasi-equilibrium (in a
time of order 7,) in which the temperatures of the two species are different.
Subsequently, this quasi-equilibrium evolves towards a true equilibrium state
in which both components have the same temperature. This process takes such
a long time (of order p~'r,) that for most purposes the quasi-equilibrium state
can be considered as a quasi-stationary state.

As a result of this discussion, in an electron-ion plasma there are two
(rather than one) (quasi-)conserved energies. It is therefore natural to consider
them, or equivalently, to choose the two temperatures 7,(x, t) and Ti(x, t)
defined by (2.11), along with the mass density p(x, ¢t) and the barycentric
velocity u(x, t), as the set of variables necessary for a full hydrodynamic
description of the plasma.

In order to complete this long, but indispensable list of definitions, we
introduce the most important non-hydrodynamical quantities entering
the macroscopic balance equations; their form will be clearly justified in
section 3.4.

The thermal momentum flux density, more commonly called the fotal pres-
sure tensor of the particles of species a is defined as

P (x, t)= mafd'v [, — u(x, )] [v,— us(x, )] f*(05 x, ¢). (2.17)

This quantity is, clearly, a symmetric tensor of rank two. Such a tensor can
always be split into two invariant parts: one term proportional to the unit

tensor J,;, and one term which has zero trace (shortly called a traceless tensor),
Pi(x,t)=P/(x, t)8,,+7(x, 1), (2.18)
where
P(x, t)=34TeP*(x, t) =3P (x, t). (2.19)

Clearly, P,(x, t) coincides with the scalar pressure defined in (2.8). The
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traceless part m%(x, t) is called the dissipative pressure tensor of species a. *
Whenever no confusion is possible, we shall omit the word “dissipative” for
brevity.

The heat flux (density) of species a is a vector whose components are
defined as

g7 (x, 1) =tm, [do [o.—ui(x, O] lo—u(x, )|? f*(0; x, 1).
(2.20)

The heat flux, together with the particle flux, is an essential “figure-of-merit”
of any plasma confinement system.

For the reader’s convenience, we have collected all the basic definitions of
the hydrodynamic and non-hydrodynamic variables in table 2.1, following a
natural classification. (This table also contains the definition of a few mo-
ments that were not discussed in the main text, and which will be useful in the
forthcoming chapters; the notations #*™ will be introduced in section 4.3.)
The relations between one-fluid and two-fluid variables are collected in table
2.2. The classification of these quantities will be further discussed and refined
in section 4.4.

Let us note that the definitions chosen here for the various moments
describing a plasma are adopted by practically all plasma physicists. However,
they do nor coincide with the definitions used in the kinetic theory of neutral
gas mixtures (see, e.g. Chapman and Cowling 1952, de Groot and Mazur
1984). The main difference is in the choice of the macroscopic “reference
velocity” (see the discussion on the energy density, above) in these definitions.
For instance, the “ traditional” definition of the pressure tensor of species a is

P (x, t) =mafdv [v,— u,(x, )][v,— u,(x, £)] f*(v; x, t). (2.21)

Here, both the electron and the ion pressure tensors are referred to the
same velocity, the centre-of-mass velocity u, instead of the separate average
velocities u#® of each species, as in (2.17). Similar comments apply to the heat
fluxes ¢°. As a result, the equations of evolution of the moments (section 3.4)
will have different forms in the two formalisms. Of course, whatever choice is
made, the equations of evolution are strictly equivalent, in spite of their

* Let us note that the identification of P, with the scalar pressure is only true when the bulk
viscosity of the plasma is negligible; otherwise, the trace of the dissipative pressure tensor does not
vanish. It turns out that the bulk viscosity is, indeed, negligible when the condition of weak
coupling (2.4.10) is satisfied.
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different forms. One can establish a “dictionary” enabling one to pass from
one system of definitions to another. This was done extensively by Misguich
and Balescu (1984).

Table 2.1
Kinetic expressions of the main quantities of macroscopic plasma physics

Quantity Expression
PLASMADYNAMICAL (“TWO-FLUID”) VARIABLES

Number density of species a, n, n,(x, t) =/dvf°‘(v; x, 1)
Average velocity of species a, u n (x, Hul(x, t)= /dvv,f"‘(v; x, 1)

Temperature of species a, T, no(x, DT, (x, 1) = %ma/de— |2 f*(v; x, 1)

HYDRODYNAMICAL (“ONE-FLUID”) VARIABLES

Mass density, p p(x, t)= Ema/dvf"‘(v; x, 1)
a
Centre-of-mass velocity, u, p(x, t)u(x, t)= Ema/dv v.f%v; x, 1)
a
Temperature of species a, 7, ny(x, 1) T,(x, 1) = %ma/dv lo—u*|? f%(v; x, 1)

NON-HYDRODYNAMICAL VARIABLES

Electrodynamical variables

Electric charge density, o o(x, )=nhO(x, 1) = Eea/dvf"‘(v; x, 1)

Electric current density, j . J(x, t)= ene(T;/me)l/zhﬁl)(x, )= Eea/dvv,f"‘(v; x, 1)
Fluxes

Particle flux of species a, I'* Ix, 1y=n (T /m ) *h*V(x, 1) = /dvv,f"‘(v; x, 1)

Dissipative pressure tensor 7%, 1) =y2n T, h*P(x, 1)
of species a, 75 = ma/dv[(v, —u) (v, — uX)—3|o— u®|%8,,1f%(v; x, 1)
Heat flux of species a, ¢ qi(x, 1)= \v/?ma,na,(Ta,/ma,)y2 heO(x, 1)

=3m, fdo (0.~ u)|v—u|? f*(v; x, 1)
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Table 2.1 (continued)
Quantity Expression

Miscellaneous moments of interest

Total pressure tensor of species a, Pq

Third-rank tensorial third moment

of species a, g7,

Second-rank tensorial fourth moment

P2 =m, [do (5, uf)o, — uS)f (v %, 1)

4rep =%ma/dv (0, — u ), —uglv, — u) f*(v; x, 1)

of species a, S5 S = %ma/dv (0, — u®Xv,— u®)|vo—u*|? f*(v; x, 1)
Fourth-rank tensorial fourth moment « ) « « « «
of species a, SI":pq rspq Ema/dv (Ur —u, )(U: L )(Up “p)(vq “q)
X f*(v; x, 1)
Third-rank tensorial fifth moment . 1 o « « w2
of species a, T2, T3, =im, [do (o, = uf)(o, — ug)(v, — up) |0~ u
X f*(o; x, 1)
Table 2.2

One-fluid and two-fluid variables.

1. One-fluid variables expressed in terns of two-fluid variables

. men uf + min;ul
=m.n,+m;n; y =———7
P ee v r men,+ mn;

—_ P e i
o= —en,+ Zen; Jr=—en.u; + Zenu,

I1. Two-fluid variables expressed in terms of one-fluid variables

A B C
. Zep—-mo z 1 V4
Sl ldis S L -y il
€ e(m;+Zm,) mip e mip
ep+mgo 1 1
n. —_— J—— —_—
! e(m;+Zm,) mip mip
e Zepu, —m;; m;
ur rT >
Zep —mjo Zep
i epu, +m,j,
u —_— u u

ep+mgo

A. Exact expressions. B. Expressions in which terms of order p are neglected. C. Expressions valid

when local electroneutrality is assumed (see section 4.1).
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Here we adopt, once for all, the set of definitions given in table 2.1. The
reason lies rather deeply in the picture of a plasma as a system of two fluids
which, because of the smallness of the mass ratio p, are almost independent.
This feature makes the hydrodynamics of an electron—ion plasma very differ-
ent from, say, a mixture of oxygen and nitrogen, where the component
molecules have comparable masses.

3.3. Kinetic equation revisited

We have seen in section 3.2 that whenever a truly macroscopic description of a
plasma is valid, the state of the plasma should be completely specified in terms
of the hydrodynamical variables p(x, t), u(x, 1), T,(x, t), T;(x, t) and of the
electrodynamical variables a(x, t) and j(x, t). The evolution of the plasma at
this level would then be described by a set of hydrodynamical equations for
the former variables, coupled to the Maxwell equations, which involve the
latter variables as source terms for the electromagnetic fields. Clearly, in a
kinetic theory, these quantities cannot be introduced arbitrarily. Rather, the
macroscopic equations of evolution are induced by the fundamental micro-
scopic laws of molecular motion. In other words, the hydrodynamic and
electrodynamic equations must be derived from the kinetic equation.

We reconsider here the kinetic equation, by collecting the results obtained
in chapter 2. We slightly transform the latter by writing an equation for the
local distribution functions f*(v; x, t), eq. (1.10). To this purpose, we multiply
both sides of eq. (2.4.15) by 8(¢; — x) and integrate over g,, a rather trivial
operation. The final result is obtained by using eqgs. (2.2.21), (2.5.9), (2.5.12)
and (2.6.24).

The kinetic equation expresses the rate of change of the distribution
functions as a result of three causes: the free flow of the particles, the action of
an electric and a magnetic field, and the action of the collisions. It can be
written schematically as

0,f%(v; x,t) =P+ F*+ X" (3.1)
The free flow term @ is the simplest of all,
= —vvf*(v; x, t). | (3.2)

This is a linear operator acting on the distribution function. Its most
important feature (from the standpoint of transport theory) is the presence of
the factor v. As will be seen in the next section, it is precisely this feature
which causes the macroscopic hydrodynamical equations to have a “hierarchi-
cal” structure. It is at the origin of the difficulties of the transport problem.
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The electromagnetic field term % * also has a simple form, derivable from a
Lie bracket,

a _ €a 1 i a .
f - _.rn_a(Er(x’ t) + ;eranmBn(x’ t)) aU,f (U, x, t) (3'3)

We recognize here the Lorentz force produced by the electric field £ and
the magnetic field B. (Remember that we use Gaussian units, in which E and
B have the same dimensions). We recall that E and B are self-consistent fields,
determined by the distribution functions; hence % is a non-linear term (see
section 2.5).

The plasma acts like a dielectric and magnetic medium: the action of an
electromagnetic field produces a polarization and a magnetization which, in
turn, modify the initial field. In macroscopic electrodynamics one is forced to
introduce phenomenological assumptions in order to relate the polarization
and the magnetization to the external field, and therefore to close the Maxwell
equations. In kinetic theory we do not need such additional assumptions.
Indeed, we note that the fields E and B of eq. (3.3) are determined by the
Maxwell equations in which the source terms, i.e. the charge density o and the
current density j are defined in terms of the distribution functions through
(2.14) and (2.15). Thus, the kinetic equation (3.1) must be completed by the
Maxwell equations,

Vv -E(x, t) =4wZeafdvf"(v; x, t), (3.9)
v AE(x, t)= —%G,B(x, 0, (3.5)
v - B(x, 1) =0, (3.6)
VAB(x, 1)= T (x, )+ L Te, [dvos (e x, 1). (3.7)

The collision term 2" ® is by far the most complicated, but also one of the
most important drivers of the evolution. It represents the rate of change of the
distribution functions due to the elastic “collision” processes. Such a process
can be defined as an event involving a small group of particles in a region of
finite size — say, a sphere of radius r_, the range of the interactions — in which
the particles interact for a finite time — say, 7., the duration of a collision.

The motion of billiard balls provides a classical picture of the motion
driven by two-body collisions. In this example, it is worth thinking of an



146 Macroscopic description of a plasma [Ch. 3

aspect which is rarely discussed in textbooks. The motion of two billiard balls
beforc and after their mutual collision is not a free motion. Indeed, in this
interval they are acted upon by the external gravitational field, as well as by
the presence of a hard table with vertical walls. Hence, the motion of the
billiard balls between two collisions is constrained by the presence of external
forces. The effect of the constraint is to confine the motion to a plane limited
by a rectangular boundary.

Analogously, the motion of the electrons and ions in a plasma between two
collisions is not a free three-dimensional motion, but rather a motion de-
termined by the presence of an electromagnetic field acting continuously on
the particles. There is, however, a difference with the example of the billiard
balls. The constraint in the plasma is due not only to an external field, but also
to the average electromagnetic field produced by the particles themselves. In
other words, the effect of the long-range interactions in a plasma is twofold:
there is a persistent action through the Vlasov field, as well as an intermittent
action through localized collisions of small groups of particles.

We have shown in chapter 2 that in the simple, but important case of a
weakly coupled plasma, the collisions are described by the Landau collision
operator (2.6.24) which, for local distribution functions, becomes

P AE DI A
B

with

d
aﬁ= 2.2 _1__
X 2we es In Afdv2 m, 0., Gmn(g)

4 0 a9

1 - a . .

R T T CYI P O R CE)
where the Landau tensor is defined as

2
86, — 8m8n
G,.(g)= g (3.9

3.4. Equations of evolution of the macroscopic quantities

Having summarized the results of chapter 2, we proceed to the key step which
consists of deriving the laws of macroscopic evolution from the microscopic
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dynamical laws. This matter is treated in most textbooks on plasma physics,
such as those quoted in section 3.2. An often quoted reference is the work by
Braginskii (1965); a short but very clear treatment is given in the article by
Freidberg (1982). In most of these works, the subject is, however, not treated
exhaustively.

The derivation is most conveniently done in two steps. We first derive
equations of evolution for the two-field (plasmadynamical) variables n,, u?, T,.
The definitions in table 2.1 immediately suggest a general procedure for this
derivation. We multiply both sides of the kinetic equation (3.1) successively by
1, v,, |v—u®|? and integrate over the velocity v. The right-hand sides of the
resulting equations must be analyzed in order to be expressed in terms of
macroscopic quantities.

Integrating directly (3.1) over the velocities, we obtain

8, [dof*(v; x, 1) =3, (x, 1) = [do (S*+F*+2*), (4.1)
where we used definition (2.2). Using now (3.2) we have
/dv O = —/dvumvmf“(v; x, t)= —Vm/dvumf“(v; x, 1)

= —Vm[na(x, t) u;(x, t)], (4~2)

where we used eq. (2.3). The Vlasov term is written explicitly as (remember the
abbreviation: 9, = d,/0v,)

a €u 1 «
fdvf = —m—afdv (E,(x, 1)+ ;erm,,umB,,(x, t)) 9,.f%(v; x, t).
(4.3)

In order to deal with this term, we use the two lemmas (2.7.1), (2.7.2) of
chapter 2,

fdv(E,(x, t)+c e, v.B,(x, 1)) 8,f*(v; x, t)

=c Y, 8.8, (x, t)fdvf“(v; x,1)=0, (4.9

the vanishing being due to the antisymmetry of the Levi-Civita symbol.
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Finally, we note that the general conservation law (2.7.4) ensures the vanishing
of the last term in (4.1). Collecting all these results, we finally obtain *

on,=—v-(nu®), a=e, (4.5)

We now multiply both sides of (3.1) by m v, and integrate over v. Using
(2.3), we obtain

m, d,(nu’) = m,,fdv (B +F+ ). (4.6)

Proceeding as above, we find

m,[dov, ®*=—v,m,|dvu, v, f*(v; x, 1)
/ /

—me,,[uf‘uf‘,,fdvf"(v; x, 1)

+ [dv (g~ u) (o~ uz) f*(03 %, 1)
= =V, [mnufuy+n,T,38, +7%]. (4.7)

In going from the second to the third form we have simply written v, v,, as
(v,—u; +u}) (v, — u, + uy); in going to the last form, we used definitions
(2.18), (2.19) and (2.11). A simple integration by parts provides us with the
result

m,,fdv v,Fe= e,,n,,(E, +c7 Y, uB

rmn

Finally, we introduce the important vector quantity
R¥(x, t)Em,,fdvv, X, (4.9)

It is called the friction force density acting on the particles of species a.
Collecting the results, we obtain

ay _ _ a,,a
d,(men ul) =—-v, (mnutus+8,,n,T, +7°

rmta m

+en (E, +c e, usB,) + RE. (4.10)

rmn

* From here on we shall very often omit writing explicitly the arguments (x, t) of the
macroscopic field variables.
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The equations for the temperatures are obtained by multiplying both sides
of (3.1) by 3m,|v—u*|?, integrating over v and analyzing the terms as
before. The result is

2 2 2 2
h, atTa = —.naua.vTa - jnaTa Voeut— 777":" vmu: - jvmq; + an,

(4.11)

where the collisional rate of heat exchange is defined as
Q= im, [do |o—u|? o (4.12)

The quantities R® and Q® are not independent. The conservation laws
(2.7.4)-(2.7.6) imply some important relations among them. We first note that,
because of (2.7.9)-(2.7.11), these quantities are solely determined by the
unlike-particle collisions X ** (a+# B). They may therefore naturally be de-
noted by quantities with two superscripts:

R°=R®, R =R,
g°=0¢%, Qi=0" (4.13)
Next, egs. (2.7.12)—(2.7.14) express the relations
R = —Ri*, (4.19)
Q%= —Q— (u*—u')+ R, (4.15)

Equations (4.5), (4.10) and (4.11) will be called the plasmadynamical balance
equations. Another current name is: the two-fluid balance equations *.

This name is rather natural for the following reason. If R* and Q“ were
negligible, these equations would simply be the hydrodynamical balance
equations for two separate, independent fluids: the electrons and the ions.
Equations (4.5) are the continuity equations. Equations (4.10) are the momen-
tum balance equations, expressing the change of the momentum density as a
result of the divergence of the convective momentum flux and of the total
pressure tensor, as well as of the action of the Lorentz force on the charged
particles. Finally, the energy balance equations (4.11) express the rate of
change of the temperatures as due to an inertial term, to the rate of work done

* Very often, in works on plasma physics, only egs. (4.5) and (4.10) are considered under the
name of two-fluid equations.
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by the pressure forces and to the divergence of the heat flux ¢ But actually,
the two fluids are not independent. This is due to the fact that the electron
and ion momentum and energy are not separately conserved. The terms R
and Q precisely take into account the transfer of momentum and of energy
between the two fluids.

The two fluids are also coupled in another way. Indeed, the fields E and B
in (4.10) are determined by the Maxwell equations (3.4)-(3.7) which are
written in terms of the plasma-dynamical variables as

v+E=47) e,n,, (4.16)
VAE=— %a,B, (4.17)
v +B=0, (4.18)
VAB= %a,E + 47'” Y e.n u”. (4.19)

Thus, the electromagnetic fields are determined by both the electron and the
ion variables.

The two-fluid picture of the plasma is often convenient. However, in many
cases it is important to stress the behaviour of the true hydrodynamical
variables of the plasma. We therefore transform the preceding equations and
derive the hydrodynamical balance equations (or one-fluid balance equations).

We linearly combine the two equations (4.5) as indicated by (2.12) and
obtain the continuity equation

dp=—v *(pu). (4.20)

Using the transformation formulae of table 2.2, we obtain the momentum
balance equation by combining the two equations (4.10). Its exact form is
rather complicated, but it can be considerably simplified by taking into
account the relation p <1, and neglecting terms of order p(=m./m;). We
then obtain

m; e

Z
dou, = —vs{pu,us+6,s (—” - g)7;+ L,

+0E, + ¢ e, j.B,. ' (4.21)

This equation has a very simple interpretation in terms of hydrodynamical
concepts. The right-hand side contains the divergence of a sum of three terms:
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the convective momentum flux, the scalar pressure and the dissipative pressure
tensor. It shows, in particular, that the expression of the total scalar pressure,
i.e. the equation of state, is

P=(ﬁ_£)n+iﬂ. (4.22)
m; e m;

Besides the divergence, the right-hand side contains the Lorentz force
density, coupling the equation of motion to the Maxwell equations, which are
now written as

v +E =470, (4.23)
1

VAE=-—0B, (4.24)

v +B=0, (4.25)

VAB= % o,E + 47'”j. (4.26)

It is important to note that there is no contribution of the collision term
X* to (4.18). Indeed, the two terms R°® and R’ of eq. (4.10) cancel exactly as
a result of (4.14). This expresses the local conservation of the total momentum
by the collisions.

We now turn to the equations for the temperatures. As explained in section
3.2, we shall keep the two separate temperatures as hydrodynamical variables,
even in the one-fluid picture, because the individual internal energies are
quasi-conserved quantities (as will be shown explicitly at the end of section
4.6). We therefore rewrite eqgs. (4.11), neglecting terms of order p, as

Zp o)., Zb 1.
(——;) d,Te=—(7u Jr)VrTe

m; i e
_2 Zp _ E Zepur B mijr
3\ m; ¢\ Zep—mo
—2g¢ v ZepuI_mijI _ 2v e ZQe (4 27)
Jlpg Vy Zep—mio IV,4, k] » -
P _ P P i i i
m, 0=~ v, T %;i T, V,u,— 3, V,u,—3v,q/ + 30"

1

(4.28)
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A characteristic feature of the plasma is the fact that the balance equations
(4.21), (4.27) and (4.28) involve the electrodynamical variables ¢ and j along
with the hydrodynamical variables p, u, T, 7;. We must therefore complete
the set of macroscopic equations by adding two more equations for the
former.

The equation for the charge density is immediately obtained, without any
approximation, from (4.5):

ato = —vrjr‘ (4.29)

This is the well-known balance equation expressing the conservation of the
electrical charge; it is, of course, consistent with the Maxwell equations
(4.23)—(4.26) and is actually superfluous.

The equation for the current, derived from (4.10) with the neglect of terms
of order p, is much more complicated *:

Zepourus - Zep(jrus +jsur) + mijrjs
Zep —m;o

atjr = Vs

1 e i
+ mv,[(Zep -mo)T,] + ;—;V,,(w,i - Zmr,s)

e
mem;

—+

(Zep - mio)E,+ %ersm(zepus - mijs)Bm

mem;

e (4.30)

This equation is called the generalized Ohm law. It plays the same role as
the ordinary Ohm law, in providing a relation between the current j and the
electromagnetic fields E and B, as well as the hydrodynamical variables p, u,
T,, T,. The fact that the latter variables enter the expression of the elec-
trodynamical quantities is another characteristic feature of the plasma, as
compared to systems studied in elementary electrodynamics. We will see in
chapter 5 under which conditions eq. (4.30) reduces to the usual Ohm law.

An additional balance equation which, in a sense, supervises all the others,
is the entropy balance equation: it will be derived in section 3.5.

We have now completed the derivation of the basic equations of macro-
scopic plasma physics. They are the hydrodynamical balance equations (4.20),

* Note that we have not neglected the term p, because we do not know a priori its size,
rs p
compared to 75
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(4.21), (4.27), (4.28), the generalized Ohm law (4.30) and the Maxwell equations
(4.23)-(4.26).

This is, of course, only the beginning of our task! It is clearly apparent that
these equations are not closed. They involve, besides the hydrodynamical and
the electrodynamical variables, the additional unknowns

me, mhs 45, 4;5 RS, O°, OV (4.31)

The hydrodynamical equations have a typical hierarchical structure. The
equations for the first moments (#, j) involve the second moments (7°, 7'),
and the equations for the second moments involve the third moments (g°, qb).
Hence, the equations for the third moments will involve the fourth moments,
and so on ad infinitum. The origin of this hierarchical behaviour lies in the
simple-looking free flow term (3.2) of the kinetic equation, with its factor v, as
well as in the complicated collision term.

These features are illustrated by the following balance equations, which are
easily derived from the kinetic equation by the same methods as above. These
equations are not merely illustrations of the previous statements: they will be
used in the forthcoming transport theory of toroidally confined plasmas. The
equations concern two vectorial fluxes: the particle fluxes I'* and the heat
fluxes ¢°, and two tensorial fluxes: the (total) pressure tensors P® and the
generalized fourth-order pressure tensors $¢. All these quantities are defined
in table 2.1. We thus obtain

Particle flux T'*:

I =—v,(m'P%+usl®) + r:—‘;naE,+ ¢ f &,,n2b, + —R“
(4.32)
Heat flux q*:
8,07 = =V (S5 + uzg’) = (245mn+ 4ndon) Vit
+(P5+ 3P 8,) v, B,
m ala
+fn“—€ &rmnd b, + RE® — ( + 3P, 5, )RE. (4.33)

«
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Pressure tensor P“:
a'Pr‘; = vn (zq:‘:n + u:P"‘:) - (P"‘;l 8:" + PS‘:" 8"") vmu:
4GB (&,pPS + €,,,P% )b, + RZ® (4.34)
m o \Erpatsp T Espalrp )Og rso* :
(14
Fourth-order pressure tensor 8%

4S5 = — V(T + unS5) = (285m + S 80 + S5 8,) Vit

1
+(297%, + 478, + 478,,) —— V. Py,

munu m< nmn
e, B N u
+ mc (erpqS:p + e:pqup)bq
PR - (g8, 4 g8, +af R, (439)

We note that these equations have a common structure. Each moment
equation involves a term containing the divergence of a higher moment (as
stated above), together with the moment itself, multiplied by «* (thus: 9,I'*
contains P* + u“I'*). All equations contain a term involving the magnetic
field in the form of a generalized Lorentz force [thus: d, ¢ contains (e, B/m c)
(g™ A b)). All equations contain a contribution of the collision term (because
these moments are not conserved quantities!) in the form of generalized
friction forces R*"™,

Rs® = 4m, [do|o—u®|? (0~ uf) A, (4.36)
R =m, [do(o,— uf)(v,— us) X, (4.37)
Rf:(4)=%m,,fdv|v—u“|2(v,—uf‘)(v:—uf)d’“. (4.38)

[The ordinary friction R* was defined in eq. (4.9).] The higher order equations
contain also terms proportional to v,,u; and to v,,P2,,.

A feature worth emphasizing is the fact that the electric field only enters the
equation for the particle flux I'*. This is due to the fact that all moments
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considered here, except I'®, are so-called centred moments, i.e. averages of
powers of (v— u“) (rather than of v alone). As a result, in deriving these
equations, one finds remarkable cancellations leading to the annihilation of all
the terms involving the electric field in these higher moment equations.

Examples (4.32)—(4.35) clearly show that there is no possibility of an exact
closure of the system of hydrodynamical equations by simply writing more
and more higher moment equations. What we need now is a deeper analysis of
the underlying kinetic equation, leading to an approximate solution of the
problem.

The approximate closure of the hydrodynamical equations, valid under
specified conditions, is the purpose of Transport Theory. Its study is the
subject of the remainder of this book. It will be the opportunity of an
excursion through the most varied fields of physics. For this reason, apart
from its great practical importance, transport theory is a treasure of beauty,
still largely untouched...

3.5. The entropy balance

It is well known that the central role in thermodynamics is played by the
concept of Entropy. As thermodynamics is, in turn, the most general formula-
tion of macroscopic physics, it is clear that the entropy will play the role of a
monitor for all the theories of macroscopic (hydrodynamic and elec-
trodynamic) plasma behaviour.

The importance of the entropy comes from the celebrated second law of
thermodynamics, which can be formulated in a very general way as follows. We
consider a subdivision of the “universe” into two parts: the “system” and the
“external world”; these two parts are separated by a “boundary” §2 (which may
be conceived either as a physical wall or membrane, or as a purely fictitious
mathematical closed surface) (see fig. 5.1). The volume of the system is

External
World

Fig. 5.1. The system and the external world. The two parts of the entropy variation.
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denoted by V. The second law of thermodynamics postulates the existence of a
state function, the entropy S. This statement implies that the value of the
entropy is uniquely determined by the values of the variables defining the
macroscopic state of the system (densities, temperatures, ...).

Whenever anything happens to the system, there results a variation of the
entropy, which is denoted by dS. It is a trivial remark to note that dS can
always be decomposed into two terms (Prigogine and Defay 1950, de Groot
and Mazur 1984),

ds=d,S+d;S. (5.1)

The term d_S represents the amount of entropy which enters or leaves the
system as a result of interactions with the external world; in other words, the
quantity d.S crosses the boundary. On the contrary, d;S represents the entropy
produced or destroyed as a result of internal processes, and which remains
within the system. The non-trivial part of the second law consists of the
postulate that the change of entropy due to internal processes has a well-de-
fined sign,

d;S=0. (5.2)

This statement — the only fundamental law of physics expressed by an
inequality rather than an equation — contains in itself all the laws determining
the irreversible evolution of the macroscopic systems.

In the framework of non-equilibrium thermodynamics, the main objective is
to relate the rate of change in time of the entropy to the various hydrodynami-
cal, electrodynamical or chemical processes occurring in the system. In the
case when the system is a certain amount of fluid, a local formulation of the
entropy balance is preferable. We therefore define a specific entropy (per
particle) s, a total entropy flux per unit area and unit time, Jg ., and an
entropy source strength ¢; all these quantities are locally defined fields, i.e.
functions of position x and of time . They are related to the global quantities
as

S= dex n(x,t) s(x,t),

d.S
dr = —-/.;ZdA "’Stot(x’ t),

95 = dex o(x, t). (53)
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The global entropy balance is then transformed into a local entropy balance,
9,(ns)=—V *Jyo + 0. (5.4)

The main point which remains open is the definition and evaluation of the
quantities s, Jg,, 0. The purely thermodynamic approach (which will be our
framework in the present section) goes as follows (de Groot and Mazur 1984,
Prigogine 1969, Kreuzer 1981). Equilibrium statistical mechanics provides us
(in principle) with an explicit expression of the entropy, valid for any given
system, as a function of the state variables, for instance

§=Seq(ny,...,ne, T), (5.5)

where n,,..., n, are the number densities of the various components of the
system. “Classical” non-equilibrium thermodynamics starts from a rather bold
assumption. It is postulated that, if the system is not “too far away” from
equilibrium, the equation of state (5.5) remains valid Jlocally. In other words, in
any small neighborhood of a point x and at any time ¢, the functional
relationship (5.5) is valid, even though the state variables may vary “slowly” in
space and time. Thus, it is asserted that, in the non-equilibrium state,

s(x, 1) =seq(nmi(x, 1),...,n(x, 1),T(x, t)). (5.6)

Another way of expressing this local equilibrium assumption is to say that
the non-equilibrium entropy changes in space and time only through the
variation of the state variables. Hence

ds

€ ase
ds= z(a—q) dqn, + (FT—‘*) 3,T. (5.7)

o

Combining this equation with the hydrodynamic balance equations (for d,n,
and 9,7) results in an expression which, compared to (5.4), yields explicit
forms for the entropy flux and for the entropy source.

Clearly, the justification of the hypotheses made here requires a detailed
analysis on the basis of kinetic theory. This will be done in chapter 6.

The application of these ideas to our model of a quiescent plasma intro-
duces a few peculiarities. It was already stressed in section 3.2 that the plasma
behaves thermodynamically as a classical ideal system. To translate more
precisely the idea embodied in the two-fluid picture, it should be said that the
equilibrium properties of the plasma are those of a mixture of two indepen-
dent ideal gases having different temperatures. For such a system, classical
equilibrium statistical mechanics yields the following expression of the entropy
per particle of species a [see e.g. ch. 5, eq. (5.2.27) of Balescu (1975)]:
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S, = E In n .
«= 3 (27rma)3/2 T3/

, (5.8)

where h is the Planck constant. We recall our conventional units where the
Boltzmann constant kg is set equal to 1. The content of eq. (5.8) appears more
clearly if we multiply it by n 7, and write it in the form

h? N,
Tn.s,=3nT,+nT,—nT, In ) (5.9)
(Zvrma)s/z 7372
We now define the chemical potential p, of species a as
n n,
po=T, In G T3 . (5.10)

Recalling egs. (2.9)-(2.11), we rewrite (5.9) in the form (Misguich and
Balescu 1984)

Ton,s,=n.e,+P, —np,. (5.11)

This is typically a quasi-thermodynamical relation, in the following sense.
For a one-component system, this equation is a well-known thermodynamical
formula [App. II, eq. (4) of de Groot and Mazur (1984)]. The peculiarity of
(5.11) is the appearance of two distinct temperatures, T, # T;: this point was
already underscored in section 3.2. The plasma is not in a true (local)
thermodynamical equilibrium state. Rather, because of the smallness of the
mass ratio, it lives for a ‘'very long time in a quasi-equilibrium state in which
the electrons and the ions are separately in equilibrium, at different tempera-
tures. The relaxation towards the true equilibrium (hence the equalization of
the temperatures) is a very slow process.

As a result, separate thermodynamical relations can be written for each
species. The global entropy density ns is then defined as

me= Tt = T 7 (et Pu o) (512)
a « ’

«x

where n = ¥n, is the total number density. This formula plays the role of the
equation of state (5.5) in the case of a plasma.



§3.5] The entropy balance 159

We now pursue the idea of a local equilibrium, as described above, and
evaluate the rate of change of the entropy density of species a, by using eq.
(5.9),

NS, =S, 0n,+n, 0,5,
=5, 0n,+n,(33, In T,— 3, In n,).

The crucial step, to be performed now, is the combination of this equation
with the plasmadynamical balance equations (4.5) and (4.11):

atnasa = _(sa - 1) v .(naua)
1 3 o a o o o a
_T(I”a" vI,+n T, V- u"+7°:Vu*+v-q*—Q )

This equation [which was also obtained by Braginskii (1965)] is readily
transformed into

Jn S, = —V (nsu*+ T, 'q%) + 0°, (5.13)
where
1 a
0= ——q° VI, — %w“:Vu“+ % (5.14)

o

Equation (5.13) has the standard form of a balance equation. The total
entropy flux of species a is therefore identified as

ot = M S ™+ %ﬂq"‘. (5.15)

As usual, the total entropy flux contains a convective term, n,s,u% and a
conductive entropy flux, equal to the heat flux divided by the temperature of
species a.

The source term o” is defined by eq. (5.14). It will be called the rate of
entropy production of species a per unit volume, or briefly, the entropy
production of species a.

We now perform a slight transformation. In the electron entropy produc-
tion appears the electronic heat exchange term Q°¢, which is related to the
corresponding ionic quantity Q' by eq. (4.15). We may therefore write

1 . ei _ Q.l
.7 B

[

T'e—-lQe= Tve-l(_Qi _ uei.Rei) -

(5.16)
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It turns out that the ion heat exchange Q' is very small [proportional to the
mass ratio u, see eq. (4.6.38)]; it will be most often neglected in this book. The
two entropy productions can therefore be rewritten in the less symmetric, but
more explicit form

e : ei 1 e _ 1 e. e
—eneTel R Tezq vT, Terr :Vu
. 1 . 1 . .
e — — te Ty l: l. '1
o Tizq vT, 7" Vu (5.17)

The two balance equations (5.13) can also be put together into a global
entropy balance,

dns=—v Y (n,su+ T, q%) +o. (5.18)

The same remarks can be made here as at the end of section 3.2. The
entropies per species, as defined here, are not intimately mixed as in a mixture
of neutral gases. For instance, each species’ entropy is convected with its own
average velocity n s u°, whereas in the traditional formulation, the convective
term is written as nsu (de Groot and Mazur 1984). Of course, a link can be
made between the two formulations and explicit transformation formulae can
be derived, relating the total entropy flux of (5.18) to the de Groot—Mazur
definition of the entropy flux and of the heat flux (Misguich and Balescu
1984). The traditional formulation is not desirable, however, for describing a
two-temperature electron—ion plasma, because it hides the fundamental
quasi-independence of the “two fluids”.

An additional, very important property enhances the motivation of this
viewpoint. The second law of thermodynamics requires the inequality

6=)Y0%>0. (5.19)
a
It will be proved, however, from kinetic theory, that the following stronger
property holds:
020, a=e,li. (5.20)
Thus, the entropy production for each species is separately positive.

The treatment given here was purely thermodynamic, i.e. macroscopic. We
shall come back to this matter in great detail in Chapters 6 and 17. The
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treatment there will be based on kinetic theory. It will allow us to analyze the
validity of the assumptions made here and to study the properties of the
entropy production in relation to transport theory.
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The Hermitian moment representation

4.1. Characteristic time scales. The quasi-neutrality approximation

In order to construct the transport theory, i€. in order to obtain closed
hydrodynamical and electrodynamical equations, we need to solve the kinetic
equation (3.3.1). Because of its complexity, an exact solution is practically
impossible; therefore, we need approximation methods, valid in the various
conceivable regimes. A clue as to the choice of approximation methods is
provided by an analysis of the various characteristic times involved in the
kinetic equation (see also the discussion in section 2.6).

- By a trivial dimensional argument, each term on the right-hand side of
(3.3.1) must have a dimension (f*/T), where T is some characteristic time.
But the latter is different for each term.

The free flow term introduces a characteristic time 7{; which may be called
the hydrodynamical time. It is related to the spatial variation of the local
distribution function. It can be estimated as

1 VTa
e (1.1)

where V, is the thermal velocity of species a, defined in (2.6.13), and Ly is
the length of the gradient of the density, the velocity or the temperature,
whichever is shorter:

1 1940
L VT TI (1.2)

Without going into more precise estimates at this stage (see section 5.1), we
note that, in most situations of interest, the gradients are due to some
experimental preparation obtained by a macroscopic device. In this case, the
length of the gradients is very large compared to molecular dimensions. It
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follows that 77 can be comsidered as a very long time, and therefore the
characteristic variations related to the free-flow term are slow *.

The Viasov term of the kinetic equation poses some complicated problems.
In the first place, there may be external high-frequency fields present (such as
those produced by a laser, or by an RF source used for heating a tokamak,
etc.). Such fields will induce fast (but also slow!) motions of the electrons. But
even in the absence of external fields, there is a possibility of fast internal
motions. Indeed, any fluctuation producing a local charge separation leads to
a force on the electrons. The latter start oscillating with the well-known
plasma frequency wp,, Which is, in general, a high frequency. The problem of
the coupling of the fast (electrodynamic) motions with the slow (hydrody-
namic) motions is a quite interesting, but rather difficult problem. It will not
be studied in this first part of our work. We only consider here slowly varying
electromagnetic fields: the influence of high-frequency phenomena is left for
Part 111 of our work. [A short, but clear discussion of this point is given by
Freidberg (1982)].

More specifically, we note that the hydrodynamic length L, and the
hydrodynamic time 7; were defined in (1.2) through the characteristic varia-
tion of the hydrodynamical quantities p, w, and T,. We now assume that L,
Ty are also the characteristic length and time scales of the electric field E and of
the magnetic field B.

This approximation may seem incorrect because of the existence, even in
the absence of external high-frequency fields, of the high-frequency waves
discussed above. However, in a linear theory, these effects do not influence the
slow plasma motions in which we are interested here. This can be understood
from the following schematic argument.

All the hydrodynamic quantities as well as the electromagnetic fields may
be split into a slowly varying part A5 and a rapidly varying part part Ag:
A = Ag + Ag. Their equations of evolution can be written in the form

azAs‘—"ps(As, AF)’ atAF=¢F(AS’ AF)'

Here Ag, Ap should be considered as a kind of vectors, representing the set of
all relevant quantities; the right-hand sides represent some, generally non-lin-
ear, combinations of both slow and fast variables and of their gradients. If
these equations are linearized as in classical transport theory, it is clear that
the slow (fast) variables can only be determined by the slow (fast) variables in

* A notable exception can occur in laser-created plasmas. The density gradient near the
critical surface may become very steep, with Ly of the order of microns. This case must be
discussed separately.
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the right-hand side. The evolution of the slow variables can then be studied
independently of the fast ones, as will indeed be done here. If, however,
non-linear effects become important (e.g. when the amplitude of the fast
electromagnetic fields is high, as for instance in the presence of an intense
laser beam or of an intense RF heating beam in a tokamak), two high-frequency
components may couple and produce a low-frequency beat-wave, which
influences the slow motions. This type of non-linear coupling will be studied
in Part III of this work.

If the main assumption is accepted, the well-known pre-Maxwell approxi-
mation follows very easily (see Priest 1982). Indeed, the Maxwell equation
(3.4.24) leads to the following estimate of the ratio of the electric and magnetic
fields:

_—

(1.3)

|E| _11B]
c

H TH

On the other hand, (3.4.26) yields

1Bl _11E| 47 .
L, ~c + = [l (1.4)
Combining these two equations, we find that the displacement current term is
of order L%, /7% ¢? compared to the left-hand side. As L, /7y is of the order of
the hydrodynamic velocity (by our “main assumption”), we may conclude

|u|?

c2

1
;a,E‘z |V AB|. (1.5)
Hence, whenever the motion of the plasma is non-relativistic (u%/c? < 1),

the displacement current can be neglected and the (slowly varying) fields obey
the pre-Maxwell equations

Vv *E=4noa, (1.6)
1

VAE=--3B, (1.7)

vV*'B=0, (1.8)

4
VAB=—j (1.9)



166 Hermitian moment representation [Ch.4

The tricky point in the pre-Maxwell ‘approximation is the status of the
charge balance equation (3.4.29). This equation was derived from the kinetic
equation; on the other hand, it is also a consequence of the complete set of
Maxwell equations. In the pre-Maxwell approximation, the truncated equation
(3.4.26) requires the current density to obey the constraint

v -j=0. (1.10)

But the complete charge balance equation is still valid (as a consequence of the
kinetic equation); in order to ensure the mutual compatibility of these condi-
tions, we necessarily must have

d0(x, t)=0. (1.11)

Equation (1.11) should not, however, be considered as an exact equation; it
only means that the charge density is a slowly varying function. As for the size
of this quantity, it may be estimated from the following argument. It is well
known that a plasma (or any form of matter) cannot support large local charge
separations. It is therefore almost always true that, in all points x and at all
times ¢,

|n.(x, £) —ni(x, t)| < 3[n(x, t) +n,(x, 1)]. (1.12)

This will be called the local quasi-neutrality condition. It implies (see table
322)

o(x, t) < %p(x, t)=en;(x, 1),

1

Ze
m;

o(x, t) < =—p(%,t)=en.x,t). (1.13)

As a result, a glance at egs. (3.4.21), (3.4.22) and (3.4.27) shows that the
charge density o can be neglected in all the hydrodynamical equations, except for
the term oF in (3.4.21). This term is, however, negligible for a different reason.
A dimensional argument similar to eqgs. (1.3)—(1.5) leads to the estimate

oE _(V'E)E Ly'E®> 4 (114)
cYjAB| |VAB|B L[iB> * '

The last estimate follows from (1.3). Thus, in the present, non-relativistic
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approximation, the term oE must be suppressed from the equation of motion, for
consistency with the pre-Maxwell approximation.
Next, we assume that

lo(x, t) u(x, 1) < |j(x, )] (1.15)

This means that the convection current is much smaller than the conduction
current. This assumption is reasonable in view of eq. (1.13), but is not a strict
consequence of the latter. When eq. (1.15) is satisfied, one sees that all the
terms involving the charge density o can also be neglected in the generalized Ohm
law (3.4.30). Moreover, the exact relations in table 3.2.2, column A, between
one-fluid and two-fluid quantities are replaced in the present conditions by the
much simpler relations in column C of the same table.

The only place where o cannot be neglected is the Poisson equation (1.6).
This equation, however, acquires a different status. Indeed, the generalized
Ohm law (derived from kinetic theory) can be used for completely determining
the electric field. Hence the Poisson equation becomes superfluous: it only
serves for defining the charge density — a quantity which does not influence
the motion of the plasma in the present approximation. For a further discus-
sion of these questions, see chapter 7.

We now come to the last term of (3.3.1). It is known from kinetic theory
that the effect of the collisions is a uniform relaxation towards thermal
equilibrium. This process takes place in a characteristic time 7,, the relaxation
time. One also often uses the collision frequency v, =, ! as a measure of the
efficiency of the collision term. The relaxation time is an internal, molecular
parameter, whose value depends on the state of the plasma (density and
temperature) *.

In Part I of our work we study collision-dominated plasmas. By this phrase,
we mean a plasma for which the relaxation time is much shorter than the
hydrodynamical time. As will be seen, this situation is the one which leads to
the most “classical” type of transport phenomena, i.e. to hydrodynamical
equations which are very close (though not identical) to those of ordinary
fluids.

4.2. The local plasma equilibrium state

Under the conditions where the plasma is dominated by collisions, we may
mentally subdivide the evolution process into two phases. Starting from an

* More precisely, there is an infinite number of relaxation times associated with )¢"*: the set
of eigenvalues of the linearized collision operation. The relaxation time is, by definition, the
longest of these times.



168 Hermitian moment representation [Ch.4

arbitrary initial state, the collisions would tend - if they were alone — to bring
the system very quickly to a stationary state: the thermal equilibrium. But the
slow processes — free flow and electromagnetic processes — prevent the plasma
from reaching this state. The result is that, after a short time, of the order of
the relaxation time 7,, the plasma reaches a state very close to the equilibrium.
From here on, the distribution functions evolve on the slow time scale.

We now make these statements more precise. If the slow processes could be
neglected, the kinetic equation would reduce to

atfa == +.x/'aa', (21)

where o’ is the complement of a, i.e. if a =, a’ =i and conversely.
These equations describe a monotonic approach towards the equilibrium
state, which is defined as the stationary solution of (2.1),

A=, (2.2)

The solution of this equation is well known: the distribution functions are
Maxwellian,

m, \3? my|o—u|?
aeq __ « s
f "a(sz) e"p( 2T ) - @3

The Maxwellians may be centered around an average non-zero velocity u. But,
to satisfy (2.2), it is necessary that both the velocity # and the temperature T
be the same for the electrons and for the ions. If we substitute this function
into (3.3.8), we note that

Gmn(g) (m;l aln o ml;l aZn)faeq(vl) fBeq(vZ)

= = 2 Gn(8) (01— 02,) () f75(21) =0 (2.4)

the conclusion following from identity (2.7.8). We have thus found the
stationary solution of (2.3): it can moreover be shown that it is the only such
solution (see, e.g. Balescu 1975). But this does not end our discussion.

We recall that the distribution functions considered here are /local distribu-
tion functions, i.e.

fea=f(p; x, t).
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With this fact in mind, we note that the argument of eq. (2.4) is not altered if
the parameters of the Maxwellian, i.e. n,, #, T are functions of x and ¢. Such
a state is called in kinetic theory a local equilibrium state. It must be clearly
realized that this is not a state of thermodynamic equilibrium, because the
latter must be homogeneous and stationary. The local equilibrium state
satisfies eq. (2.2), but not 9,f*=0. There is, however, no contradiction
involved, if we recall that (2.1) is not the complete kinetic equation. The space-
and time-dependence of the parameters n,, u, T will be governed by the slow
processes of evolution.

The previous discussion is standard in the kinetic theory of gases. In the
case of plasmas, however, it misses an important point: the fact that the
various types of collisions are not equally efficient. Whereas collisions between
particles of equal mass are quite effective in redistributing momentum and
energy among the partners, collisions between unlike particles of largely
different mass behave very poorly from this point of view. As a result, the
relaxation towards the equilibrium, described by (2.1), proceeds in two stages.
First, the like-particle collisions bring each component to its own state of local
equilibrium. As this “partial equilibration” proceeds independently for the
two species, nothing prevents the two components from having different
temperatures and average velocities. Afterwards, the temperatures and average
velocities tend to equilibrate, but this process is much slower, especially for the
temperatures: the time scale involved is of the same order as the slow time
scales related to the free-flow and the electromagnetic processes. Thus, in a
sense, the unlike-particle collisions must be treated on the same footing as the
slow processes.

To sum up, the separation of fast and slow processes in the present case
must be done as follows. The electron—electron and the ion—ion collisions
bring the plasma in a short time to a state of local plasma equilibrium,
satisfying the equations

=0, AV=0. (2.5)

The local distribution functions satisfying these equations are

£90(v; x, 1) =n,(x, t)(

m, )3/2 m,|v—u*(x, t)]?
_ Ma xp| —
20T (x, 1)) P 2T.(x, 1)

(2.6)

In this state, the density, the average velocity and the temperature of the
electrons and of the ions can be different. We must recall, however, the local
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electroneutrality constraint (1.12) which implies the following relation between
ion and electron densities:

ne(x, t)=2Zn;(x, t). (2.7)

It is important to note that the parameters of the local plasma equilibrium
state are none other than the two-fluid variables on which macroscopic
plasmadynamics is based.

The subsequent stages of the evolution are governed by the slow processes
(including the unlike-particle collisions). The role of the fast collisions £ is
to keep the system constantly in the neighbourhood of the plasma local
equilibrium.

Just as in the previous section, the discussion here was largely qualitative.
The precise quantitative criteria for the validity of the concepts discussed here
will emerge a posteriori.

4.3. The Hermitian moment expansion

As follows from the discussion in section 4.2, the state of the plasma, after a
short transition time, remains close to the local plasma equilibrium. For this
reason, the local plasma equilibrium will be called a reference state. The
distribution functions can then conveniently be written in the form

(v x, 1) =f0; x, t) [1 +%%(v; x, 1)]. (3.1)

The functions §¥*(v; x, t) measure the deviation of the local distribution
function f* from the reference state. As the latter is a known function, it is
clear that the whole information about the real state of the plasma is
contained in

We now introduce a condition which is very useful in providing an
unambiguous interpretation of the results. We have seen that the local plasma
equilibrium distribution function (2.6) depends on five parameters: n,, u®, T,
(for each species). If the plasma is in a state of local equilibrium, these
parameters coincide precisely with the two-fluid variables defined in table
3.21. '

But in an arbitrary state (3.1), this coincidence no longer necessarily holds.
It is, however, possible to construct representation (3.1) in such a way that the
parameters n,, u;, T, entering the definition of the reference state do coincide
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with the exact values of the density, velocity and temperature of each species.
This implies

/dvf"‘(v; x, t) =/dvf"‘°(v; x, 1) =nq(x, t),
/dv v,f*(v; x, t) =/dv u,f%0; x, t)=n.(x, t)u(x, t),

Im, [do o—u®|? (v x, 1) =3m, [dv o= u"|? f<(v; x, 1)

=n,(x,t) T,(x, ). (3.2)

These conditions can be reformulated as constraints on the deviations:

/dvf"‘")‘("=0, /dvf"‘ov,f("‘=0, /dvf“ovzi":O. (3.3)

The following picture emerges now. During its evolution, the plasma goes
through successive states which remain close to the reference state. The latter
contains all the information about the plasmadynamical variables n,, u® T,
The reference state is itself slowly varying in space and time, because of the
variation of the latter parameters.

Before continuing, it is convenient to note that the distribution functions

f*® depend on the velocity v only through the dimensionless variable

c=(f(n;'j—t)-)l/2[v—u“(x, 0] (3.4)

As most of the important quantities of table 3.2.1. are averages of powers of
the relative velocities v — u®, it is clear that ¢ is a quite convenient variable.
We shall therefore express all functions in terms of it. Clearly, some care must
be taken by noting that the passage from v to ¢ is different for the electrons
and for the ions, and that the coefficients of the transformation depend on x
and ¢. We now write the local plasma equilibrium distribution as

m 32
(o5 x, 1) =ny(x, 1) (T—(;T)) #(c; x, 1), (3.5)

where

¢°(c; x, 1) =¢"(c) = 27) " exp(—c?). (3.6)
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We note the very important fact that the reference state, when expressed in
terms of the variables c, is a stationary, homogeneous and isotropic state, whereas
considered as a function of the original variable v, it has none of these
properties. Moreover, $*°(c) is the same function for the electrons and for the
ions, it is therefore independent of the superscript a. The dimensionless
reference distribution function is normalized as

fdc ¢’(c)=1. (3.7)

We now express the complete distribution functions (3.1) as

potes =l ) (7o) (e e )

32
=n,(x,t) (T(m t)) ¢°(c) [1+x"(c;‘x, t)]. (3.8)
The constraints, expressed in the new variables, are

fdc =0, fdc ¢ ¢, x*=0, fdc ¢ 2 x*=0. (3.9)

We now start the investigation of our main problem, which consists of
finding an approximate solution for the unknown functions x“. Several
methods have been developed for this purpose. The most ancient and cel-
ebrated one is the Chapman-Enskog method, developed independently by
these authors already in 1916 (Chapman and Cowling 1952). Grad’s (1949)
moment method has also been widely used. Finally, Résibois’s (1970) more
recent projection operator method is quite elegant and useful in the linear
domain. All these methods, in various versions, have been applied to the
problem of transport in plasmas. We shall give in section 5.7 a comparative
discussion of the results obtained by various methods. Here, we start directly
with a method which has — in our opinion - the advantage of clarity and
simplicity. It is close in spirit to Grad’s method but has features in common
with the two others as well.

The general idea is quite straightforward. Adopting a technique widely used
in quantum mechanics, we start by expanding the unknown functions x* in a
series of orthogonal polynomials. The determination of the coefficients of this
series is equivalent to the determination of x“. The kinetic equation provides
an infinite set of equations for these coefficients. If we are clever (lucky?) the



§4.3] Hermitian moment expansion 173

series will rapidly converge. A truncated set of equations will then be sufficient
for the determination of the transport properties with the required precision.

The first step consists of choosing an adequate set of orthogonal polynomi-
als. We want an expansion of x%(¢; x, t), considered as a function of ¢, i.e. o
the three scalar variables c,, c,, c,. As the local equilibrium distribution (3.6)
obviously plays a crucial role in the theory, a very natural basis is provided by
the Hermite polynomials, which are orthogonal with respect to a Gaussian
weight function. As we are considering here functions of three variables, we
need to use the so-called tensorial Hermite polynomials, a generalization of the
well-known one-dimensional Hermite polynomials. But even at this level, we
still have a choice. The problems arising in this context are discussed in detail
in the General Appendix G1. It is shown there that the use of the straightfor-
ward three-dimensional generalization of the Hermite polynomials (“reducible
tensorial Hermite polynomials”’) (as was done by Grad 1949) leads to a rather
untransparent expansion.

It turns out that a representation in which the various types of anisotropy
of the distribution function are clearly exhibited, is the most convenient guide
for reasonable truncation approximations. Such a representation would be of
the form

x%(e; x, t)=A4%c; x, t) +c,B*(c; x, t)
+(c,c;— 328, )C:(c; x, )+ -+, (3.10)

where A% is a scalar function, B” a vector function, C5 a symmetric traceless
tensor function, etc. All of these depend only on the absolute value of the
variable ¢, as well as on the variables x and ¢. These functions are sometimes
called “anisotropies” of successive orders. Representation (3.10) is taken as a
basic Ansatz in the Chapman-Enskog method (Chapman and Cowling 1952,
Braginskii 1965, Ferziger and Kaper 1972). In that method, the functions A4°,
B, C; are then further expanded in series of Laguerre—Sonine polynomials of
the single variable ¢, and each of them is truncated at some appropriate level
(see General Appendix G1).

The reason for the usefulness of such a representation is clear. Our main
use of the functions x* will be in the calculation of the relevant fluxes
appearing in the hydrodynamical balance equations, such as the heat flux g*
and the pressure tensor 7. In a linear theory, the former will be entirely
determined by the vector part of x° i.e. by B® whereas the pressure tensor
involves only the tensor part of x* Even in a non-linear theory, the explicit
exhibition of the anisotropies helps considerably in the calculations.

It is shown in the General Appendix G1 that the most convenient expan-
sion, which exhibits explicitly the anisotropies, is obtained by using the
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irreducible tensorial Hermite polynomials, H, (m) ~r(¢). The deviation of the
distribution function is then represented as in eq (Gl 4.3),

x“(e; x, 1) = 3 k@7 (x, 1) H"(c)
n=0

©
+ Z htrx(2n+1)(x, t) H’§2n+1)(c)
n=0

+ Z hf:fzn)(x’ t) H,(f")(c)-i- . (311)

n=1

The function x“(¢) of the continuous vector variable ¢ is thus represented
by a denumerable infinite set of coefficients h*™called the (irreducible)
Hermitian moments of the distribution function; these, in turn, are classified as
scalar Hermitian moments h*®™, vector Hermitian moments h®*"*V traceless
tensor Hermitian moments h®?™, etc. The moments are related to the original
function by eq. (G1.4.12) as

R (x, 1) = [de ¢°(c) HY™ () x°(es x, 1). (3.12)

Alternatively, the moment h“('") (for m # 0) can also be interpreted as the
average value of the Hermite polynomzal H,('"),(c), calculated with the full
(dimensionless) distribution function ¢*(c; x, t), eq. (3.8),

R, (x, 1) = fdc ¢’(c) [1+x%(e; x, O H™ , ( m=#+0. (3.13)
Indeed, the orthogonality of any polynomial H to H® =1 implies
(277)_3/2fdc exp(—3c?)H™. (€)=8,0. (3.14)

Hence, in the local equilibrium state, the average value of all Hermite
polynomials of non-zero degree is identically zero.

The irreducible tensorial Hermite polynomials are defined in the General
Appendix G1, egs. (G1.4.5)-(G1.4.7). The first members of each set are
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displayed in table G1.4.1. It is seen that the tensorial polynomials are of the
form

H’§2n+l)(c) = Crf(2"+1)(c),
HE"(e) = (cre,— 3c78,)8%" (c), (3.15)

where f@"*D(¢), g®™(c) are functions of the absolute value of the vector c.
Hence, when written in terms of the irreducible Hermite polynomials, the
expansion (3.11) is precisely of the form (3.10).

Next, we must be sure that the constraints (3.9) are satisfied. Because of the
orthogonality of the Hermite polynomials, the constraints take a very simple
form. They amount to requiring that three Hermitian moments by identically
zero for every acceptable deviation x*:

R®=0, hP=0, rO=0. (3.16)

Finally, we note that the moments #%? and A*® have a very important
physical meaning. Using table 3.2.1, we have

Wrs=mafdv [(Ur_uf)(vs_ug)_%lv_"alzsrs]fa

nofde [ee,— 3%, ]¢°[1 + x°]

=Tn \/_fch(z)

Hence, we find a very simple relation between the pressure tensor and the
second-order tensor Hermitian moment:

=y2n,T, h*®. (3.17)

We easily derive a similar relation between the heat flux and the third-order
vector Hermitian moment:

T 32
= /3 at-3 a(3)
\/;"’“(ma) n, h*®. (3.18)
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We have now achieved the desired series expansion, exhibiting the tensorial
symmetries explicitly. For calculational purposes, these series must be trun-
cated. This truncation process is done in two stages. As said before, in a linear
theory we shall only need the vector and traceless second-rank tensor parts.
The deeper reason for retaining only these two classes of moments will appear
gradually as we go on: see particularly section 5.2 and chapter 6. In particular,
it is shown in section 6.3 that the scalars and the anisotropies of order three
and higher give rigorously no contribution to the entropy production (in the
linear regime). We thus neglect all other anisotropies and write

x*(¢; x, 1) =c,B(c; x, t) + (c,c, — 528, )C(c; x, 1). (3.19)
The series for B and C;, can then be truncated at various levels. We
consider here three successive approximations.
(A) The thirteen moment (13 M) approximation *:
¢ B (c; %, 1) =h=(x, 1) BHO(c),
(c,c,— $¢%8,,)C2(cs x, ) = B (x, 1) HP(c). | (3.20)
(B) The twenty-one moment (21 M) approximation:
¢,BY(cs x, 1) =K (x, 1) HO(c) + h2®(x, 1) HO(c),
(cie— 3678, )Ca(es x, 1) =hs@(x, 1) HO(c) + h3®(x, 1) B (e).
(3.21)
(C) The twenty-nine moment (29 M) approximation:
¢,B(c; x, 1) =hO(x, t) HY(c) + k2O (x, 1) H(¢)
FhO (%, 1) HO(e),
(ccy—3c%,,)C(e; x, 1)
=hiP(x, 1) HP () + hi®(x, 1) HP (¢) + hiO(x, 1) HS(c).

(3.22)

* In this approximation one retains, for each species, the 5 plasmadynamical moments n,, uf
and T, (contained in f°%), plus 3 components of the heat flux h2®, plus the 5 independent
components of the pressure tensor h%?. These sum up to 13 moments.
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It will be seen, a posteriori, that in a linear theory, the 13 M approximation
is rather poor, whereas the 21 M approximation is excellent. The 29 M
approximation adds no significant contribution to the transport coefficients
(see section 5.4).

4.4. Classification of the moments

Having defined the nature of the Hermitian moment expansion, we now pause
a little while, before continuing the systematic development of the transport
theory for collision-dominated plasmas. In order to get a clear picture of the
macroscopic, as well as of the microscopic description of the plasma, it is
useful to discuss globally the properties of the various moments entering the
theory. Many of the points appearing in the present section were already
discussed previously; nevertheless, it is good to put them all together here.

The various moments necessary for a description of the plasma can be
classified in at least two ways, according to the criteria chosen for this
operation (see section 3.2). We begin our discussion with the two-fluid picture.

In a first group we put the plasmadynamical moments, n,, u*, T, (a = ¢, 1).
They are defined as moments of the reference local equilibrium distribution f*°,
even in a non-equilibrium state. This follows from the constraints (3.2) and (3.3)
imposed on the distribution functions. Conversely, it may be said that the
knowledge of the plasmadynamical fields n,(x, 1), u*(x, t) and T, (x, 1)
entirely determines the reference state.

In a second group we put the nonplasmadynamical moments. They are
defined as the set of all Hermitian moments of the distribution functions, h*™
(x, t): They have a property which is complementary to the plasmadynamical
variables: their value is identically zero in the reference local equilibrium state, as
follows from (3.14). Thus, the knowledge of all the non-plasmadynamical
moments completely determines the deviation x* of the real state from the
reference state, as follows clearly from (3.11).

We may also use a different criterion for the classification of the moments,
which corresponds to the one-fluid picture of the plasma. This amounts to a
“reshuffling” of the plasmadynamical variables. Instead of the two scalar
moments n., n;, one introduces the linear combinations p and ¢:

n, p=Y myn,
o

= . 4.1
n; o= Zeana ( )
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Similarly, the two vector moments #°, u' are replaced by the two linear
combinations

u pu=73y m.nu"
a

- . 4.2
u j=Y enu" (42)

In some cases, it turns out that the electric current j is not a useful quantity
(a typical instance arises in the neoclassical theory of radial transport in a
magnetically confined plasma). One may then use an alternative choice of
moments, by considering the mass flux pu and, say, the electron flux, I'®,
u' pu = Emunau"
= a . (4.3)
ut I'*=n.u*

In the new, one-fluid picture, we put together the mass density p and the
mass flux pu (which is identical to the momentum density): they are averages
of conserved quantities (i.e. collisional invariants, see section 2.6). In the same
group we put the two temperatures 7,, which are quasi-conserved quantities.
This means that the collisional heat exchange between the two species is
negligibly small, as will be shown at the end of section 4.6. The set of
quantities p, pu, T, T; will be called the hydrodynamical moments. They are
all defined as moments of the reference local equilibrium state, but they have
an additional important property. In their equations of evolution there is no
contribution (or a negligibly small contribution) from the collision term.

Among the remaining quantities defined as combinations of plasmadynami-

cal moments we are left with the electric charge density o and the electric
current j, i.e. typical: electrodynamical moments. The former is a conserved
quantity, but, as follows from the discussion in section 4.1, it plays a quite
unimportant role in the class of slow motions considered here. It does not
enter at all the hydrodynamical equations; it must only be kept in the Poisson
equation. Thus, for the slow plasma motions, the condition of quasi-neutrality
(1.13) prevails, and we may set o =0,
" The electric current j is a combination of plasmadynamical moments, but
is not a conserved quantity. Its equation of evolution (3.4.30) contains a
contribution from the collisions: the friction force R, which represents the
collisional exchange of momentum between the two species. The same remarks
are valid for the particle fluxes I'*, as can be seen from eq. (3.4.10).

The property of non-invariance under the collisions is shared by these
plasmadynamical moments with the non-plasmadynamical moments. It is
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therefore natural to group them together in a class called the non-hydrodynami-
cal moments. In order to stress this common property, we adopt for j and for
I'* a notation analogous to the non-plasmadynamical moments. For this
purpose, we introduce dimensionless quantities,

T 1,2

pmen Z) "ho (49
(<
T 1,2

1";'=n,,(—“) ho®, (4.5)
md

The relation between these dimensionless quantities is easily derived:

m ety 4 [ Me .
A= —hi'"+ (?e) u,. (4.6)

We thus have a uniform system of notation for all the non-hydrodynamical
moments: the letter & provided with appropriate sub- and superscripts. No
confusion should arise from the fact that, in spite of the notation, " and
h*® are not Hermitian moments (i.e. moments defined by the deviation from
the local equilibrium). Indeed, the true Hermitian moment A%Y, defined as
the average of the Hermite polynomial H™), is identically zero by constraint
(3.16) and will therefore never again appear in the theory.

Among the non-hydrodynamical moments, there are a few which have an
outstanding physical meaning. These are

— the particle fluxes: T*— ho®,
— the electric current: j, — h'V,
— the pressure tensors: m* — h®®,

— the heat fluxes: q* > h?,

It is important to note, — this will be proved in the next section — that these
particular non-hydrodynamical moments, in addition to their exceptional
physical importance, share a specific property. In their equations of evolution
there appears a source term which is a function of the hydrodynamical moments.
The equations for all the other non-hydrodynamical moments do not possess
such a source term. Conversely, the moments of this class are the only
non-hydrodynamical quantities entering the equations for the hydrodynamical
variables, (3.4.21), (3.4.27), (3.4.28). These important properties justify the
introduction of a subgroup of privileged non-hydrodynamical moments, con-
taining A7, D, h2® and h*?, and only these. In particular, there are no
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Table 4.1
Classification of the moments. PD = Plasmadynamical; HD = Hydrodynamical
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scalar privileged moments; similarly, there are no privileged moments among the
third-order and higher-order anisotropies. The difference in the behaviour of
privileged and non-privileged moments will be discussed in chapter 5. It will
also be shown in chapter 6 that the distinction between privileged and
non-provileged moments has a deep.thermodynamic basis.

The classification discussed in the present section is summarized in table
41.

4.5. Equations of evolution for the moments. 1. General form

Having discussed the definition and the classification of the moments, we now
proceed to establishing their equations of evolution. At this point we make the
following remark.

The set of equations for the moments are often called the “fluid descrip-
tion” in the plasma physics literature. We believe that this name is ambiguous,
for the following reason. If we write down the equations for a// the moments,
we would have to solve an infinite hierarchy of partial differential equations.
Their solution is equivalent to the solution of the kinetic equation. In other
words, the knowledge of all the moments is equivalent, by (3.11), to the
knowledge of the distribution functions f*(v; x, ¢).

One may also say that the complete set of moment equations is a represen-
tation of the kinetic equation. (This phrase has the same meaning as when we
say that the Schrodinger equation for an anharmonic oscillator is equivalent to
the infinite set of equations for the coefficients of the wave function, expanded
in a series of Hermite polynomials). Thus, the complete set of moment
equations is not a “fluid description”, but rather, provides a bona fide
microscopic description of the plasma.

However, in practice, the infinite hierarchy of moment equations cannot be
solved. One therefore tries to justify an approximate truncation of the moment
hierarchy at a certain level. When the level of truncation is reduced to the set
of hydrodynamical moments, one is justified in speaking of a fluid description
or a hydrodynamical regime. More precisely, in order to obtain a set of closed
equations for the hydrodynamical moments, it is necessary to obtain valid
approximations of the privileged non-hydrodynamical moments as functionals of
the hydrodynamical ones, evaluated at the same point in space and time. This
operation will be the object of the forthcoming chapters.

The derivation of the equations of evolution for the moments (or, briefly,
the moment equations) is quite straightforward, although it requires a lot of
labour and patience. The hydrodynamical balance equations were already
derived in full generality in section 3.4. We now specialize them to the simpler
case corresponding to the local quasi-neutrality constraint (1.8) and adopt the
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dimensionless moment notation, by using egs. (3.17), (3.18), (4.4) and (4.5) *.
The continuity equation (3.4.20) remains unchanged:

dpo=—v-(pou). (5.1)
The momentum balance equation (3.4.21) becomes

at(pur) = —Vs(purus) - Vr(neT; + ni:Ti)

h"B,,.

"Sm 5

T 1/2
A RPN E

[

(5.2)

The temperature equations (3.4.27), (3.4.28) become

[

T 1,2
a,T=—u~VTe—%Tev-u+(j—) hd v, T,
[

T 1/2
+4T, v,[(;e—) hsD] ~3ATHR O,u,

[

T \2 T \1/2
+32 TP v [(7) hgl)]—mv,[nen(mi) hy®

e 3ne e

_ %Q(z) 3T ROQ®, (5.3)
and

8T;=—uvT,—3T, Vv -u—32ThP v,u,

10 T, 12
—%V,[nﬂ}(z) B+ 02, (5.4)

* Here and in the forthcoming equations we shall use a “mixed notation system”: On the
right-hand side of the equations we use the two-fluid variables n, n; which lead to more compact
and more transparent equations, rather than translating them explicitly into one-fluid variables by
using table 3.2.2, column C, i.e. n_=Zp/m;, n;= p/m;. For instance, the second term on the
right-hand side of (5.2), when written consistently in terms of one-fluid variables, would be
~(2/m) V,[p(T, + Z"'T)}.
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The collisional terms appearing here are related to the quantities Q°(= 0
defined in (3.4.12), (3.4.13) as

Q°=3n,0?, (5.5)
0% = 3n,0%®. (5.6)

Introducing also the reduced friction force from (3.4.9) and (3.4.13) which is
scaled, for convenience, as

ei T; 1/27 (¢}
R" = _neme m_ r (5'7)

[

we easily find that (3.4.15) implies:
A 1
0" = - S0P - 3T.APQY. (5.8)

The collisional terms Q' and Q@ will be evaluated in the next section. It
will turn out that Q@ is a term of order u (= m_/m;), hence negligible. Thus,
the only collisional contribution to (5.3) and (5.4) is the last term of the
former, which is non-linear in the non-hydrodynamical moments, hence it is
usually small. These facts justify our treatment of the two temperatures as
“quasi-conserved” quantities.

The structure of the hydrodynamical balance equations appears now very
clearly. Their right-hand side contains two types of terms. The first group
involves only hydrodynamical quantities. The second group involves the
privileged non-hydrodynamical moments #", h*®, p*®_Equations (5.3) and
(5.4) also involve a collisional contribution, which is very small.

For completeness we also rewrite the Maxwell equations in the new nota-
tion:

Vv +E =470(=0), V/\E=—%8,B,

T )1/2
- (O]
| (5.9)

4
v-B=0, v /\B=%ene(

We now turn to the non-hydrodynamical moment equations. We begin with
the electrodynamical moment equations, which were already derived in section
3.4, but which must now be transformed into equations for the dimensionless
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moments. In this process, we note that 9, j, contains two terms: one involving
9,h" and the other involving 3,(n,T.}/?). The latter must be made explicit by

using the hydrodynamical equations (5.1)—(5.4) (with Q® = 0). In this and the
following calculations, the following lemma is very useful:

0(n12%) " = (na2)”

X {(1 + %) \A [u,, - 8“(%)1/2%”]

T, 1
— §ee| =& Mi— g TP/
+[u" ’ ('") h”}nm/z (nTE7)

a

1/2
P‘/_ha(z)v [ Sae(ﬁ) h(l)}
m n

[

1,2
" p\/ﬁ V,,[naTa(%) ht;(3):| Saep (I)Q(l)}

6n,T

a“a a

(5.10)

where p is an arbitrary integer.
We have seen that the charge conservation equation (3.4.29) reduces, for
slow motions, to a constraint on the current (1.10) or, with (4.4),

v, (n.T}*n) =0. (5.11)

We now combine (3.4.30), (1.13), (1.15), (4.4), (5.7) and (5.11), in order to
obtain the generalized Ohm law for the dimensionless current density,

12
M [P e p it T) + -5 B
0 = (5] (ot i O neTe) + et

 e.,.hVB, +0® + UM+ O+ NO. (5.12)

rmn

€
eC
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Here Q" is the dimensionless friction force (5.7), which will be evaluated in
section 4.6. The remaining terms are

T,\'* 1 i
w”=ﬁ(m—°) Lo, [ (ks - wTi®)], (5.13)
€ eve

CV=—u-vh®—hrD g u +3h" v -u

T 1/2
+ghﬁl)hfﬁ)vm[u,,—(m—°) hf,”], (5.14)

[

T 1/2 m 1
PNETLT-NE—
ere

R Y RO 9, (1)

— 1RO QM (5.15)

These terms will be discussed below.
In the alternative description (4.3), in which one of the particle fluxes
replaces the electric current, we obtain from (3.4.10)

3 he®h = (ﬂ)m[_
t"r T

[+ 4

e
v/ + =
r(naT;!) m E"

ata [+ 4

e
+ m"ce he®B + QM + y*® 4+ NoO), (5.16)

rmn-"m
[+ 4

The friction term for species a is defined as

T \1/2
Q:'“)=nama(m—“) RS, (517)

[+ 4

From egs. (3.4.14) and (5.7) we obtain

1 __ 1
Qre()__ 5)

i 1 T 1/2
0,V = W(f) . (5.18)
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The other terms in eq. (5.16) are

1,2
Ut!(l) = — ﬁ _TL
" m

a

1 a(2)
— Vs (n T D), (5.19)

ata

nT

[+ 3ni: 4

1/2
w0 (5] [‘ VL (n LAEOR)

—+

a(l) 1/2p (1)
3T1/2h v, (T 2h®)

1
a(l)g, (1) 1,2
+ ik, v, (n,T1?)

a”o

+ W21V 2R ORD v, (TR 0)

n,
— LhOp®doMgec (5.20)

The derivation of the Hermitian moment equations is not difficult, but
requires some care. As an example containing all the delicate points of the
calculation, we sketch in some detail the derivation of the equation for #2® in
Appendix Al. Those hints are sufficient for enabling the reader to understand
or check the forthcoming equations. The collisional contributions in all these
equations will be evaluated in section 4.6; at present, we simply introduce the
definition

Qum. —n-lfduH,ﬁ:y (mo/T,)(v—u®)) . (5.21)

- We now present the first equations of the Hermitian moment hierarchy, We
actually truncate the hierarchy at the level of the 29 M approximation (3.22).
Clearly, the 21 M approximation is recovered by setting everywhere h%® =
h*? =0; the 13 M approximation is obtained by setting also h*® = h"‘(s) =0.
The equations are presented all together. Their common structure and the
meaning of the notation is discussed below.
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(A) Vector moments

/5 (T, 2
@)= /| = —<
athr 2 ( a) T:! rTa

e
+ mac 6, hPB, + 0O 4 U@ 4 pa® 4 O 4 N

rmn’"m

a

(5.22)
e
9,h*® = m—"‘ce,m,,hf‘,,(s)B,, + QP+ U@+ DO+ O+ N*® | (5.23)
a
e
ohN=—2¢ h2DB + QD4 DD 4 C*D 4 N*O (5.24)
mc
(B) Tensor moments.
W~ _ /37, | 2y he@p
athrs = rs|pq Vpuq mc rs\pq epmn gm Pn
a
2 2 2 2 2
+OIP+ US® + DD + G2 + NI, (5.25)

2e

4 4 4 4 4 4
QD = 5T e Epmah OB, + QX0 + U@ + DEO + GO + NI,
a

(5.26)

RO = =T e EomnhEDB, + 0RO + US© + DO + C5© + NI©.
a

(5.27)

In the tensorial equations we have introduced the convenient symmetriza-

tion operator J,, ,, defined as

Trsipa = %(arpasq + 8,5, — ’3‘8”81’4)' (5.28)
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Although the detailed form of the moment equations is quite complicated,
it is important to analyze the common structure of egs. (5.12), (5.16),
(5.22)—(5.27). The right-hand side of the equation for the moment of order n
features in succession:

(1) A term involving only the gradients of the hydrodynamical variables p, u,
T, and the electromagnetic fields E and B: it will be called the source term. It is
because of the presence of these source terms that the non-hydrodynamical
moments can ultimately be expressed in terms of the hydrodynamical ones,
and that the hydrodynamical equations can be closed. It is important to note
that the source term is different from zero only in the equations for h®, h*®,
h*? and hX®. This confirms the statement in section 4.4 by which these
moments are given a privileged role. This property has important conse-
quences.

(2) A magnetic term originating from the Lorentz force. It is always
proportional to the vector product of the moment of order n and the magnetic
field. This term will, of course, play a predominant role in the study of
magnetically confined plasmas.

(3) A collisional term Q™" is always present, because the non-hydrody-
namical moments are averages of dynamical variables which are not collisional
invariants. These terms will be called collectively: the generalized friction
terms. They contain both linear and non-linear contributions, and will be
evaluated in section 4.6.

(4) A “hierarchical” term, or “up-term” U*" which contains the moment
of order (n + 1) produced by the flow term of the kinetic equation. We have
given U® in (5.13) and U*® in (5.19); we give below the form of U2®, [*®
and U,"‘(S), but omit the others, because they will not be used later. Note that
there is no up-term in (5.24), because h*® =0 in the 29 M approximation.

go=-2g (L . (noT272he®) 5.29
rs ﬁ rslpq m, n T3/2Vp n,f, q ) ( . )
14T,\'* 1
0= 2| Tz, (5:3)
6 (T,\"* 1
a(5) _ a a
(]r()_ —\/—I_O_(m_a) n T3vm(naTa3hrr(r16))' (5'31)

(5) A “down-term” Df"f_"’ which involves the spatial derivative of the lower
moment of order (n—1). This term is, of course, absent in the equation for



§4.5] Egquations of evolution: general form 189

k" and for h*®. For the other relevant moments it is given by

T, 1,2

D® = ‘/53“-7;;1)‘1(”:) v, he, (5.32)
3 2 Ta e -1/2 7/21 a(2)

Drao:_f —| T V(T ?h2P), (5.33)

5 2 (T, 2 ~11/2 11,23, a(4)
Drd( )=: _— g m— [2Ta vm(Ta h,-m )

+V14 2T 9,1, (5.34)

(6) A group of convective terms C*™ involving the moment of order n (and
possibly others of lower order) and the velocities u#“, as well as their spatial
derivatives (see 5.14). Note that in eq. (5.16), because of the nature of
he® ~ 42 these terms are absorbed in the nonlinear terms N*®. We quote
only the explicit forms for the privileged moments,

2) _ . 2 2pa(2 . _ 2)
CiP= —u*+vhi? +3h;P v cu =27, ho? V,ug

+3V2h;PnD v ,u,, (5.35)
GO = —u* e vhi® — 3P v, ul — $hyD v,up,
+3h°® ¢ ey + 2 hEORD g ul. (5.36)

(7) Finally, there is a set of complicated non-linear terms N*") in addition
to the non-linear contributions contained in the generalized friction terms (see
egs. 5.15 and 5.20),

m

3/2) a(3 2, ()
Vo (1o T205P) = 38°°h5PRPQW,

1,2
\/ﬁ( Ta) 1 @

Nrt;(2) = Y
3 2 rs
3 n 1./

a

(5.37)
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T 1/2 5 1
a(3) _ | _« - a(3) 3/23a(3)
A _(ma) V2 naTﬁ/zh' 9, (n. T h5)

8 1 a2 a(2)
+ g n—f_h"(") Vp(nﬂ;hmp)

a

+(2/V5)(8° + Zu /A (T,/T;)* 6% ) hePQY — §°hsOnPOD.
(5.38)

(8) We finally underscore the fact that the electric field E only appears in
the source term for the first order moments A%, 2™,

4.6. Equations of evolution for the moments.

1I. The generalized frictions
In the previous section we left unspecified the contribution of the collision
term to the Hermitian moment equations, i.e. the generalized frictions. We now
turn to the explicit evaluation of these quantities. A typical generalized friction
is made up of two terms, corresponding to like-particle and to unlike-particle
collisions:

Q5= Q5%+ 05 (6.1)
(where, as usual, a’ is the complement of a). Q;ﬁ is the contribution of the

(aB) collisions to the rate of change of the average of a dynamical function
of the dimensionless variable ¢, defined by (3.4),

Q3 = nlafdv 4/((ma/Ta)1/2(v—u"))1"’ﬁ. (6.2)

We start with the discussion of the electron—electron collisions. Using (3.3.8)
and (3.8), and performing an integration by parts, we find

07 = - 24 [, e fan,0| () " (er-00)|

XGmn(g) (31, = 3,,) /(1) (1)

4 3/2
_27e"In A 2(m ) fdc1fdcz 3y (1)

m]m()

2
mzn,

% o = e () () (1 () 1+ x°(e),

dcy,
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which can be rewritten as
oV =-"75 -9 (6.3)

where we introduce the characteristic time 7., which is a good measure of the
electron relaxation time,

1 427 Z%*n;In A 64
“'_e= 3 m 232 (6.4)

We recall here definition (2.6.27) of the Coulomb logarithm:

T A

In A=
Ze?

: (6.5)

where the Debye length A, is given in (2.4.8). The dimensionless quantity Q7
is defined as

a\l/(cl)

d
Qf’f=fdc1dc2( 5e ——

0
)Gm(y) (a o

)¢°(cl) #(c2),

1m
(6.6)
where vy is the dimensioniess relative velocity,
Y=6 €6
The Landau tensor G,,,(v) (see eq. 2.6.26) is evaluated as a function of the

dimensionless relative velocity,

2
Y 0 in ~ Yon¥n
Gpn(v) = —"5—. (6.7)

¢%(c) denotes the (perturbed) dimensionless distribution function,

¢*(e) =¢°()[1+ x*(e)]. (6.8)

A similar calculation yields the following expression of the ion—ion gener-
alized friction:

i Wam 1 g
0j= -+~ ai, (6.9)

Ti
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where f; is defined by the same dimensionless function (6.6), in which all the
subscripts e are replaced by i. We introduce here the ion relaxation time T,
defined as *

1 4/27 Z'%'n;In A
:i -3 m2T3 (6.10)

Hence
n=p"2Z(T,/T,)" . (6.11)
For the electron—ion collisions we use the Lorentz form of the collision

operator, described in section 2.8, egs. (2.8.1), (2.8.11). By means of several
partial integrations we obtain

05 = 1 [dvy ¥ ((me/T)" (v —u"))

3W2m 1 _
-3 ZQ‘b (6.12)

with
Qfg=fdc Gy (e) #5(e), (6.13)

which involves the Landau tensor of the dimensionless variable ¢, and the
following functional of the dimensionless distribution function ¢:

e _ 3y (c) 3¢°(c) (1)1 ay(c) 3¢°
k= "8, o, T ac,|\ Tac, dcs
. 3% [3y(e) 3¢°(c)
1 ...
+ 2% ac,,( dc, dc, |

+y[aick(¢e(c)a‘g—£f))] .o (6.14)

J

* The ion relaxation time 7, as defined here differs by a factor y2 from Braginskii’s (1965)
definition [his formula (2.5i) has a factor v instead of Y2« in our eq. (6.10)]. We do not see any
reason for introducing such an artificial asymmetry between the electrons and the ions.
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In deriving this equation, we made use of the relation

u'=sut—u=— j
enel’

193

(6.15)

valid for a quasi-neutral plasma, as well as of (4.4). The dimensionless tensor

da,,, is easily obtained from (2.8.12):

T; .
n = (8 + HiD) + HDRD.

[

(6.16)

Finally, the ion—electron generalized friction is written in the following form,

using (2.8.13),
0= [doy((my/T) (- u)) o™

1 n, T,

with
ie _ 3y (c) Fie
Q= fdch,, (¢).
The dimensionless vector £ is obtained from (2.8.17):

j;ie(c) = —-L,, ¢i(c) + Mnmkm ¢i(c) - %NHMPk'"kP ¢i(c)

with

(6.17)

(6.18)

(6.19)
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The dimensionless coefficients in (6.19) are readily obtained from (2.8.18):

_m, 3¢°(¢)
L,= Tefdc G,,,(c)—————ac

r

B= ()" fae Gonle) #(0) (6:20)

and so forth,

After these transformations, the problem is reduced to the evaluation of the
four quantities @*# and of the coefficients of (6.20). All of these operations
involve integrals over a linear or a quadratic function of ¢* In the Hermitian
moment method, one simply substitutes one of the forms (3.20)-(3.22), and
obtains an explicit function of the velocity, enabling one to perform the
integrations. We now sketch the integration procedure.

Remember that the functions {(¢) of interest are polynomials in the
components of ¢. The simplest of all the integrals on our list are those of
(6.18). If the coefficients L, M,... are known, the integrals to be calculated
are of the form

fdc exp(—c?/2)cPec ey .- (6.21)

i.e. they are simply moments of a Gaussian distribution.

Next, we treat the integrals appearing in Qf,f, (6.13) and in the coefficients
of (6.20). It is clear from (6.14) that 5#;(c) has the form of a Gaussian,
exp(— ¢?/2), multiplied by a polynomial; hence, both (6.13) and (6.20) reduce
to a linear combination of integrals of the form

fdc exp(—¢?/2) G,,(¢) cPeenc,.... (6.22)

The contributions Q“* of the like-particle collisions (6.5) require a more
tedious calculation, because they involve two integrations, over ¢; and ¢,, and
because the Landau tensor mixes these two variables non-linearly. Therefore,
after performing the differentiations, one goes over to the new integration
variables vy, T,

Y=¢—¢;, F=%(¢'1+"2):
cl=1—‘+%7’ c2=1—‘_%7:

exp(~3(c} +c3)) = exp(—I* - }v?). (6.23)
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Table 6.1

Integrals involved in the calculation of the generalized frictions.

195

Gaussian moments

-3 ok 35 Qk+1)
(21r) fdre r _—ZW

(2%)_3/2fd1‘e_r2 L s 3.5.7---(2k+3)

39k +(5/2)
(27) 7 fare " I*L,LL,L,
5.7+ (2k +5)
= (8pnByg + 8 plug + 8,,,,18,,,,)———————————5.2“(7/2)

@)~ f dre T r*r,I,I,ILT,

= (B (B by + 8,800+ 8,385, )+ 8,y (8 gBrs + 80,8, + 8,8,

progs psoqr nrogs

+ 8,5 (8,85 + 8,8, + 8,8, )+ 8,,(8,,8,+ 8,8, +8,.8,,)

npors nspr np-qs nq ps

79---(2k+7)
+ 8,05 (8,8, + 8,8, +8 8'1)}_72W

npPqr nqg pr nrip

Integrals involving the Landau tensor

2k+lk!

-3,2 ey 2k
27 dee 721G, (c) k=6,

(21r)_3/2fdc e=c'/2 G,;(¢) c*epe,

252k +1)!

= 48rs8mn - 8rm8sn - srnssm
( ATy

(21r)_3/2fdc e 2 G, () c*e,cnc,e,

= {68rs(8mn8pq + smpan + 8’"118"[’) - 8"’"(83"8["1 + 83[’8’"1 + 8"18"1’)

—Ssm(s,,,épq+8,p8,,q+8,q8"p)—8,"(8 Oy + 8,0 p)—8 8.0

sp-mq sq-m rpUsq-mn

253 (ke +2)!
- Ssn 8r 8m + 8r 8m - 8.: 8r 8mn —
( P mq q P) pPrq 105)/-27
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As the Gaussians are still factorized in the new variables, the integrals reduce
to combinations of integrals of the form

| farew(~r)ror,r - || fav exe(=12/4) G () v |

Apart from a trivial change of scale, these integrals are of the same type as
(6.21) and (6.22).

In conclusion, all the integrals necessary for the calculation of the gener-
alized frictions are of the form (6.21) and (6.22). They can be calculated very
easily: the results are collected in table 6.1. The method by which they are
obtained is explained in Appendix A2.

From here on, the calculation of the generalized frictions is a quite
straightforward, though tedious matter. We illustrate the procedure for two
simple, typical examples in Appendix A3. We now list and discuss the results
of these calculations.

We first give the form of the coefficients in the ion— electron collision term,
(2.8.18), (6.19), evaluated in the 21 M approximation,

L,=— 713_0—;,:,@) + E-}%h;@,

Mo = 80 = 20+ b,

Nipn = 73_—(6kp6mn + 84,0, + 81, )(h‘“’ ‘/27 h;‘”),

L,=8,- 2 peor 3 peo, (6.24)

ns 5 ns Sﬁ

We now list the collisional terms entering the non-hydrodynamical equa-
tions (5.12) and (5.22)-(5.27). They are collected in table 6.2; the numerical
values of the coefficients of these formmulac are given in table 6.3. It is essential
to discuss and understand the structure of these formulae.

We first note that each generalized friction term Q*™consists of a linear
part and a non-linear part. The former is defined by a matrix C§,y for the
electron moments and by a matrix Ci,y for the ion moments. The non-linear
part is defined by an array of coefficients Dy yp, respectively D}, yp.
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Table 6.2
The generalized frictions.

Vector moments

3 2 2
2m+ 1) e
0:%"" V= ¥ Chrsramnhi® 0+ X X Diwvrjamerapht® TR,
m=90 m=0p=1
Convention: Q*MW =QM; W = j® n=0,1,2,3
3 2 2
i i i2 i i2m+1)1i2
Q"D = ¥ Chasramsth®™ P+ X X Dinrjzmeraphi®TOREP,
m=1 m=1p=1
n=1,2,3
Tensor moments
3
058" = ¥ Cf, 2 mhSE™
m=1
11
2m+1)pe@p+1 2 e -
+ Tk Z Z Dipi2m+1 2p+1he( m+Dpg2er )+D2,.|22he( )he() n=1,2,3
m#* p= =0
|(2n) Z Cln 2mhr.r2m +9- |jkD2n|22hl(2)h;((:)’ n=1,2,3
m=1

Trs ik = (srjs.rk +8,48;, J8,_,8],()

Next, we note that each of these coefficients may have a contribution from
the like-particle collisions and one from the unlike-particle collisions. We
therefore write

C:{N= CE;N + Cf{i}v, CMN CMN + CMN’
DM|NP DM|NP+DM|NP’DM|NP DM|NP+DM|NP (6-25)

It turns out that the ion—electron (ie) contributions to all these terms are of
order u(=m./m;), hence they are negligible by our general standards:

Cin=0,  Dynp=0. (6.26)

It can be clearly seen from the structure of the kinetic equations, and from
the two examples treated in Appendix A3, that the “special” moment A, i.e.
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Table 6.3A

Coefficients of the linear electron collision matrix; C5y = — 7. 1

< —_— e
v = Cam-

[Ch.4

Vector moment couplings

ch =1
= o= 13+4/227"
/10 10

e 15 . 69+12/2Z7! . 4332 +360Z7"
015"W7—0_ C35= — 20\[7_ Cs5 = 2-8-0\[2_

. V105 . B+32z7! . 1077 +421y2 27}

7=y €37= 4\/5 — Cs7= — _2-80\[6; —

o 35484+45131y2 Z !
” 20160

Tensor moment couplings

. 6+32z7!
2=
c§4=_36+9\/2_2'1 5= 204y2 +205 Z~!

10/14 1402
o5, = 24+3227! o= — 231y2 +114727! o= 6768v2 +10935 2!
8y14 16802 4032y2
Table 6.3B
Coefficients of the linear ion collision matrix; Cly = — 77 e,y = Clpy.

Vector moment couplings
€33 = 5

; 314 . W2
C35 = — T35 Cs5 = 14

3 .4 . 45131
Y 177 28043 7 10080v2
Tensor moment couplings
€= ﬂ
5
Ci24 =- ﬂ 0314 = ﬂ
70 56 _
. W1 ; 1147 . 10935

€2 = Che = — c
* 56 7 16802 " 4032/2
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Table 6.3C
Coefficients of the non-linear electron collision matrix; Dy, yp =17, 1d§,| NP-

Vector moment equations

. _3W2
d1|1,2 = T
e 1 e 1~>-1
d3|1,2=ﬁ d3|3,2=§Z
Tensor moment equations
e = £ e —HZ’l
21117 75 2225 3
3/5 _
§|1,3=‘W d§|3,3=%z !

the dimensionless current, enters the generalized frictions only through the
unlike-particle collisions. Hence, because of (6.26), this moment does not
contribute to any term Q™) On the other hand, it is involved in all electron
terms Q%M as well as in OV, on the same footing as all the other vectorial
Hermitian moments. We therefore achieve a better symmetry and economy in
the presentation by grouping together the current with the electron Hermitian
moments, and making the notational convention

0W = QO RO = pD (6.27)

This convention will be used only when the system of variables (4.2) [rather
than (4.3)] is adopted, and when there is no possible confusion with the electron
Sflux (4.5).

_We now discuss in some detail the linear collision operator: it has a number
of remarkable symmetry properties. We note that it couples only ion moments
among themselves and electron moments (including h'"’) among themselves: this
is expressed by the presence of two separate matrices CSy, Cisn. Next, within
each group, the linear collision operator couples each moment to all other
moments of the same tensorial nature. This is expressed by the property

C2em,2n+1 = C2em+1,2n =0,
C21m,2n+1 = C2lm+1,2n =0. (628)
The collision matrix is symmetric:

Cin=Cim»  Cin=Canr- (6.29)
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This property is quite important: it implies that the eigenvalues of the collision
operator are all real. It turns out, moreover, that the eigenvalues are definite
negative. This expresses the fact that the collisions bring any small deviation
monotonically back to equilibrium.

Looking now at the detailed form of the coefficients, we note the following
regularities. The electron collision coefficients are all of the form

Cyn = _l(aMN+Z—1BMN)E -1 Cun- (6.30)
Te Te
The conventional minus sign in this definition turns out to be very convenient.
Here a,n, Bans Cyn are purely numerical coefficients: they are collected in
table 6.3A. The first term, a,,y, is the contribution of the electron—ion
collisions, whereas B,y comes from the electron—electron collisions. The
factor Z~! is a signature of the latter. It follows that in a plasma with highly
charged ions (Z > 1), the electron—ion contribution dominates the electron—elec-

tron contribution:
|Cin|>|Conl,  [Z2>1] (6.31)

Clearly, the matrix elements ¢, have a vanishing electron—electron contribu-
tion (see eq. 3.4.13).

The ionic matrix elements (table 6.3B) contain only an ion-ion contribu-
tion. Hence, combining (6.3), (6.9) and (6.30), we find

i 1
Cun=— T CMN» (6.32)
with
cvn = Bun- } (6.33)

For easy reference, we list here explicitly the linear parts of the generalized
frictions involved in the 21M approximation:

1 _ 1 3
TeQ£ )= _C§1h£ ) — Cfshs( ) — Cfshs(s),
R 05 = = ik = e, s — c5shs,
RQF = — kD — 5 — 5k,

1Q;P = — i@ — cishl®,
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RQI = — O = i,

Te res(2)= _nghfs(z) - C§4h:s(4)’

QP = — ek — cuht®,

nQIP =~ — L,

RO = = i = . (6:34)

In forthcoming chapters we will also need the expressions of the generalized
frictions entering the particle flux equations (5.16). These are related to Q
by eq. (5.18). We thus find

n0FP = chih® + 3 iD + cfsh2O

i 1
0 = 7 (—efih® — i@ — ki) (6.35)

The coefficients c%,y, ci v are given in table 6.3 as functions of the charge
number Z. The following symbols are used in (6.35):

T, m, |
= ('m—?) : (6.36)
1 Te | Qe | Te

The second form of the parameter A will prove to be quite useful later.
If we prefer to express the generalized frictions in terms of the particle
fluxes, we simply replace the dimensionless electric current 2 by

AV = ghi® — pe® (6.38)

Let us stress a rather obvious point, which turns out to be very important in
connection with the neoclassical transport theory developed in forthcoming
chapters. The relations (6.34) between generalized frictions and Hermitian
moments (or “fluxes”) are intrinsic, in the sense that they only involve the matrix
elements of the collision operator *.

* The reason we insist on this point is that Braginskii (1965) uses, in his classical work, a
different representation of the friction term, relating it to the electric current and to the
temperature gradient (rather than the heat flux). Such a relation involves the additional use of a
transport equation and therefore depends on the collisionality regime (see below, section 5.7). This
fact was also pointed out by Hirshman and Sigmar (1981).
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We now briefly discuss the non-linear contributions to the collision matrix.
We have selected among these only the coefficients entering the moment
equations in the 13 M approximation. All these coefficients are again propor-
tional to 7, !, hence

1

€ —_
Dy \np=
Te

dyy - (6.39)

We note here that the electron-ion and the electron—electron collisions give
rise to different contributions:

e —_ e e — jee
d2n+l|l,2m - d2n+l|l,2m’ d2n+l|3,2m - d2n+l|3,2m,

e — gei e — Jee
d2n|l,2m+l_d2n|l,2m+1’ 2n|m,m—d2n|m,m' (640)

The electron—-electron contributions are again recognizable by their signature
z .

Finally, the non-linear contributions to the ion moment equations originate
only from the ion-ion collisions.

Before closing this chapter, we discuss an important collisional contribution
which is not listed in table 6.2: this is the collisional heat exchange Q®
appearing in the temperature equations (5.3), (5.4). By using the same methods
as before we find, using (5.5), (6.17)-(6.19), (6.24),

0? - -2Z,(1,-1,). (6.41)

T

We discarded here higher-order terms, which are all multiplied by . We may
also use (5.6) and (6.12) to check directly relation (5.8).

This result shows that the unlike-particle collisions tend to equalize the ion
and electron temperatures. However, the process is extremely slow, as the
corresponding relaxation time is proportional to (7./p). This result provides
the final justification of the concept of a local plasma equilibrium, char-
acterized by two different temperatures, considered as quasi-conserved quanti-
ties.

Appendix 4A.1. Derivation of the moment equations

As a typical example of the calculations involved in the derivation of the
moment equations, we consider here the equation for the dimensionless heat
flux, he®.
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The tricky point in the calculation is that one should not switch over too

early to the dimensionless variable ¢. We thus write, by using the definition in
table G14.1,

ahs® =3, {m;* [dose(o) HO[(ma/T) (0= u)] )

I —

X[|v—u"‘|2—5(Ta/ma)]]. (A1.1)

We now remember that on the right-hand side, not only /%, but also the
plasmadynamical variables n,, u* T, depend on time, hence, using the kinetic
equation (3.3.1), we have

81O = (n, T2 h® 3,(n,T22) ™"

gt 5] o e s

- (atu:)

«1—3,1 (’"T:)B/zfdvf“ (0, — u&) (5, — u?)

(aT)‘/_m ( )3/2fdvf"‘ (v,—u2)

( a)3/2fdv(v )(1o—u*|*=5(T,/m,))

x{—v,,,v,,,f"‘——"[E+%v/\B] -af"+xf"}. (A1.2)

a

The time derivatives in the four first terms are evaluated by using the
plasmadynamical equations (3.4.5), (3.4.10), (3.4.11). In the last term, we treat
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separately the contributions of the various terms of the kinetic equation. We
consider, in particular,

[av (o, —ux)(lo=u"" = 5(T./m,)) v, 9, 1"
=V, [dv (5= u) (10— 0| = 5(T/m)) [ (v, — u3) + ui] 1
+(i7) [do (10— %1 = S(T,/my))[ (v, — usy) + ] £°
+2(9,u5) [do (0, = ) (0, ~ wp) [ (0, — ugy) + ] 7

+(5/m (VL) fdo (0= u)[(vn—up) +upl /e (A13)

At this point it is safe to go over to the dimensionless variables c,. As an
example, the first term on the right-hand side is treated as

V[ dv (6= u?) (10— %12 = S(T/m,))[(v, = usy) + ] £°
~ VafnuTo/maY| fde cen (=) #1014 x7)

+u,‘:,fdc c,(c?—5) ¢"(1+ x")]}

= V[ nal T/ m ) (T HED + 2/ ZHD +VT0ushe®)]. (AL4)

The last step is obtained by expressing the polynomials in the integrands in
terms of Hermite polynomials,

ctm(c? = 5) =2THS) () + 22 HR(c),
c,(c2—5)=Y10H® (¢).

Let us make a special note about the contribution of the third term on the
rhs of (Al1.3): '

[de &1+ x)cenen =3 (B8, + B5D8,, + hi8,,,). (AL.5)
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This result is a consequence of the truncation (3.19): it is valid in all three
approximations (13 M, 21 M, 29 M) considered here. If higher anisotropies
were retained, we would also have a term proportional to A25).

We believe that these indications are sufficient for the understanding of the
derivation of the moment equations.

Appendix 4A.2. Proof of the results of table 6.1.

All the integration formulae of table 6.1 can be easily obtained by using
arguments of tensorial symmetry. They will be illustrated by two typical
examples. Consider first

J\g=(2m)"" far e~ I**I,LLT,.

mnpq
Clearly, this object is a tensor of rank 4, completely symmetric in its indices.
After integration, there is no privileged vector or tensor available; therefore,
the tensor J'%) can only be constructed by combinations of the unit tensor.

mnpq
We conclude from this discussion that

JE = B8 8 +8, 80+ niup),

mnpq mn=pq mp=nq

where B is a purely numerical scalar. In order to calculate its value, we
perform twice the trace of both sides:

I, =5B®8,,,  J%)=3-5B").

mnrr rrss

The left-hand side is easily calculated, by using standard Gaussian integrals,

J® = (2,”)—3/2/'(1116—1"2 [2k+4

rrss

3.5-7---(2k+5)
2k+(7/2) ’

~4n(2m) " [Tdr e T 2k+o =
0

from which we find the value of B given in table 6.1.
The integrals involving the Landau tensor are somewhat more complicated.
Consider, for instance,

L(k) = (277)_3/2de e_CZ/z Grs(c) CZkaCn.

rs|\mn
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This is a tensor of rank 4, symmetric in the group (rs) and in (mn), but not in
any cross-permutation between these groups. It must also be constructed by
combinations of unit tensors. It must therefore be of the form

L&), =B{¥8.8,, + BS (8,8, + 8,,8im)-

rs|mn
Next, we note that (2.7.8) implies

k) gy _
Lrplpn_Lrplmp_O'

In order to determine the coefficients, we first take the trace over (rs) and
(mn):

L) .. =3(3B{ + 2B{¥).

prlag

Next, we calculate

K) == g (k)
L,g\pg=0=Bi" +4B".

We thus find
B = —4B»
and we easily calculate

2 — C,C

()
ky -3/2 -22% %p S i
L) 0= (27) fdc e 5 e,

o o
=47 (27) 3/2f dc e™¢'/2 2c2k+3
0

_ 23 (k+ 1)
1527

from which we determine

22 (k4 1)
15/27

and thus the result given in table 6.1.

B =
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Appendix 4A.3. Collisional contributions to the moment equations

We illustrate the calculations involved in the evaluation of these contributions
by considering two simple examples.

(a) The friction force QY. From egs. (3.4.9), (3.4.13), (5.7) and (6.12)-(6.14)
we obtain, with ¢ (¢) =c¢,,

Qe = fdc Gy (¢) #5(c)

_ a¢e(c) @ az¢e(c) L
—fdc G,k(c)(——ack HHD gt : (A3.1)

For the present illustration, we only keep two terms in the Lorentz expansion
(6.14) and evaluate ¢°(¢) in the 13 M approximation (3.20). Using table
G1.4.1, we get

0¢° 0( 1 3 )

— ¢ = A2 = 5) + —=hsDc, + ¢, ...
aC,- ¢ m k ( ) ‘/5 k[ ]
R 1 . e e
3¢ dc, —¢( 8.k \/I_O(C 7)(hk ¢+ 8,5 cp)

\/5 (2he(2)c Cn+ 8hsPc e, — 2hf,(kz)) + ck[])

The terms proportional to ¢, were not written down, because they do not
contribute to the integral (see eq. 2.7.8). Substituting these terms into (A3.1)
(and writing out only terms of even parity), we find

Q:i(1)=/dc Grk(c)[%hi(s)(cz_S)
pPq "p-q

—hf,l)(S \/f (2he(2)c ¢, +8,,h<Pc ¢

—2h§‘£)))]¢°(c)-
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All these integrals are of the type listed in table 6.1; we thus find

; 4
R A R (A32)

(b) The electron—electron collision term Q%®. As an illustration of the
treatment of a like-particle collision term, we consider eq. (6.6) with Y (¢;) =
H, (¢,); hence (see eq. 6.23),

y _ 1
aclm ‘/f

(clrsms + clssmr - %8rsclm)

1
— (L +3v,)8,,,— 38, (L, + 3v..)| +[res].

7 (5 +3v,) 38, (L + 3v,)] +[reos]

In the product ¢°¢° we retain (in this illustration) only terms linear in the
moment h%?:

(31, — 9,,)9°(c1) ¢0(C2)(1 +-—= 7z h;(;)H(z) 1))(1 + "/l?hi(vz)Hﬁ)(c))

= ¢ (cl) ¢ (CZ)[ ‘/—h;:)(clpa +clq8np_ c2q8np_ c2p8nq)‘

+yn[...1]

‘/_ Pq

Substituting these results into (6.5), the latter reduces to

=(@2n) e "/“( h°<2)(p8,,q+yq8,,p)+---).

ee(2) _

-1 far.
V22 (27)

X3V + 3Y:0mr ) G () B52 (¥,80q + Y0y )-

_szdy e_y2/4

These integrals are again of the standard type of table 6.1 and we obtain

2
Qii‘z’ _ . 6h$§2). A3.3
oF (A3.3)
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5

The classical transport theory

5.1. The linear transport regime

Having derived a complete set of moment equations (within a well-defined
approximation), we must now solve these equations. We thus derive expres-
sions of the privileged moments in terms of the hydrodynamical variables. It is
clear, however, that even this truncated problem, which is seriously reduced as
compared to the original kinetic equation, is still formidable: we are faced
with a set of coupled non-linear differential equations. We must therefore
introduce additional simplifications before being able to solve these equations
analytically.

We recall that the privileged non-hydrodynamical moments are driven
directly by the hydrodynamical and electrodynamical “forces”: these are the
gradients of the hydrodynamical variables and the Lorentz force (see the
discussion at the end of section 4.4). In a first stage, we shall assume that these
driving forces are “weak”.

In order to make this statement precise, we use the following argument. As
all the moments #*™are dimensionless, all the terms in egs. (4.5.12), (4.5.16),
(4.5.22)—(4.5.27) have the dimensions of an inverse time. It follows that the
source terms in those equations introduce the following characteristic times:

T \2 1 T\
-1_[fa} L -1 (2} 2
TTa_(ma) T;lVT:xl’ Tp (me) prpl’
1,2
m
wl=|vel, s (T) < E. (1.1)
€ €

Let 7y be the lower bound of all these times: 1y will be called the
hydrodynamical time. In other words, none of the times introduced in (1.1)
may be shorter than 7y *,

Tre 2 TH> Tp>1-H7 Ty 2 TH> T 2 TH-

* Nothing precludes one or more of these times from being infinite. This occurs whenever p, u
or T, happen to be spatially homogeneous, or in absence of an electromagnetic field.

211
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We now introduce the main assumption, namely that the hydrodynamical
time is much longer than the collisional relaxation times ., 1, defined in (4.6.4)
and (4.6.10):

L «1, I« (1.2)
TH TH

In an isothermal plasma, the second relation follows from the first. But in
some cases (for instance, when the electron temperature is much larger than
the ion temperature), 7; may be of the same order, or smaller than 7, *.

We denote by Ay the greatest of the two ratios of (1.2),

AH=Max(i,—Ti—)<<1. (1.3)

™ TH

The disparity (1.2) between the time scales (which is consistent with our
qualitative discussion in section 4.1) is characteristic of the so-called hydrody-
namical regime of evolution of the macroscopic quantities.

Next, we note that the hydrodynamical quantities, whose rate of change is
determined by (4.5.1)-(4.5.4), evolve entirely on the hydrodynamical time
scale, i.e. slowly. Indeed, eqgs. (4.5.1) and (4.5.2) do not contain any collisional
contributions, hence 7, does not enter at all these equations. Equations (4.5.3)
and (4.5.4) contain the collisional contribution Q® which, as shown in
(4.6.41), is exceptionally small, and a non-linear term which is also small (see
below). Hence, the hydrodynamic variables p, u, T, change very little in a time
of order 7,. These arguments reinforce our discussion in sections 4.1 and 4.2.

We now turn to the non-hydrodynamical moments. Their equations of
evolution (4.5.12), (4.5.16) and (4.5.22)-(4.5.27) contain both slow and fast
terms, i.e. terms involving gradients and electromagnetic forces, and terms
coming from the collisions. Multiplying all the terms of these equations by 7,
and using the results of table 4.6.2, we see that the collisional contributions
can be balanced against the hydrodynamical source terms if we assume that
the dimensionless moments h®Pare at most of order \y. This remark allows us
to start a perturbation theory, considering Ay as a small parameter. We thus
expand,

R P = 3 Ny P (1.4)

rzl

Recalling egs. (4.3.1), (4.3.8) and (4.3.11), we note that the moments #°(?
are simply the coefficients of the Hermite representation of the deviation

* As an example, for hydrogen ions, 7; < 1, whenever (7, /T;) > p~ 1/ =12.24,



§5.1] Linear transport regime 213

x%(¢; x, t) from the local equilibrium state. Hence, (1.4) is equivalent to an
expansion of the distribution function in powers of the small parameter Ay:

(v, x, t)=f%v; x, t)(l + Y M xi (o x, t)), (1.5)
q

where f° is the local plasma equilibrium distribution defined by (4.3.5).

Let us stress once more an essential point. In expansion (1.5), the exact
plasmadynamical moments n,, u®, T, enter as coefficients of the zeroth order
reference function. Because of constraints (4.3.9), the presence of a deviation
X[, adds no correction to the values of the conserved quantities as calculated
in the local equilibrium. In other words, there is no expansion such as (1.4) for
the hydrodynamical quantities.

The linear transport theory is concerned with the lowest order term in this
expansion, i.e. ¢ = 1. It therefore starts from the moment equations, linearized
in Ay. Before performing this linearization, we must devote special attention
to the magnetic terms, which were not yet discussed. These terms introduce
their own characteristic time scale, related to the Larmor (or cyclotron)
frequency of the particles of species a, defined in (2.6.16). Explicitly, we have

Q. =- , Q,=——=—-ZpL,. (1.6)

me m;c

We emphasize again the fact that £, <0 and 2, > 0. Here we have a rather
wide range of controllable variations. Compared to 7,, the characteristic times
|2,]~! may be long or short. All these cases can be realized in present-day
experiments. We therefore make no special assumptions at this stage concern-
ing the order of magnitude of the characteristic product 2,7,: it will be treated
here as a finite (zeroth order) quantity.

On the basis of this discussion, we linearize the moment equations (4.5.12),
(4.5.22), (4.5.23), (4.5.25), (4.5.26), by discarding all terms other than the
source terms, the magnetic terms and the linear collision terms. We also
introduce the explicit expressions (4.6.34) of the collisional generalized friction
forces. The resulting equations, in the 21M approximation, are then (we now
set Ay; =1 and revert to the simple notation Afj?) = h*P)

(A) Electron vector moments

1 1
1 1 —_ 1 '
athg ) — Qeermnhsn)bn - : (Cilhs' ) CleBhi(B) CICShi(S)) T gr(-l)’
e

[

N 1 \ 1
2 3 = 1
arhi‘ 7= ‘Qeermnhem( )bn = _T(Cgth' ) + C§3h$(3) Cgshi(S)) T gf(B),
€ e

1 1
817D = Dot mph Vb, = = — (1A + 53D + ¢55h2®). (1.7)
[+
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(B) Electron tensor moments

A = Q. (emhSSD + a2 )b,

smn "rm

1
(5ol + esuhit®) + 155,

,.4|»~

01D — Q. (Emnh D + €, hSP ) b, = —}(c;2h¢§2>+c34h¢§4>). (1.8)

rmn sm smn Trm
[

(C) Ion vector moments

. 1, . . e 1.
athlr(3) - ‘Q Ermnhir(ts)bn == :(cil’,?’hlr(s) + cil”Shlr(S)) + :grl(?’)a
1 1
. 1, . .. L
81D — Qe h by = — —(chshi + cish[®). (1.9)

1

(D) Ion tensor moments

i(2 2 2
athlrg ) — 91( rmnhl( ) + Esmnhlr(m))b

n

1, i i ica 1 .
=~ (chh? + b)) + gl
1

rs
1

A = Dyl + e hD ), = ~ L (cphiD + ki), (1.10)

The vector b, is a unit vector along the magnetic field (as usual),
b,=B,/B. (1.11)

The dimensionless source terms are defined as (see €gs. 4.5.12, 4.5.22, 4.5.25)

1/2
W= g [ Pe € _1
6= 5] (s Bttt i (D)) (1)

[ e’te

1/21
e(s>__¢‘.,( ) oL, (1.13)

[

8P = V21, Ty e Volty, (1.14)
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12 4
@.._f,,( ) 19,1, (1.15)
8P =21, T, ,, Vou, (1.16)

A natural factor 7, or T has been included in these definitions. These
sources are therefore dimensionless quantities, proportional to (7,/7y).

We emphasize again the important fact that the source terms of the non-
privileged moment equations are identically zero,

g®¥=g=0, g¥=gP=0. (1.17)

The coefficients of the collision matrix ¢Sy, cisy are listed in table 4.6.3.

The set of moment equations (1.7)—(1.10) provides a complete description
of the collisional plasma in the 21M approximation. According to the discus-
sion in.section 4.4, it corresponds to the choice (4.4.2) for the one-fluid
description. It was mentioned there that in some problems (such as those to be
met in magnetically confined plasmas) the electric current may not be an
appropriate variable, and one then prefers the choice (4.4.3). For complete-
ness, we give here the corresponding moment equation for the particle flux
heD, which replaces the first equation (1.7) in that picture. From (4.5.16) we
obtain

rmn "m

1
a,hf(l) - Q. ha(l)b = Q;'(l) + T_gra(l)’ (1.18)

a

or, more explicitly, for the case a = e (see eq. 4.5.18):

nD — Qe heVb, = (cuh(l)+c1 R + e ht®) + L —gtw
C TC " ’
(1.19)
with the source term
1/2
o« _, [Pa 1 _ fa
g’ T ( T, ) (manav’("“T“) maE,). (1.20)

The electric current still appears on the right-hand side of (1.19). If necessary,
it can be eliminated by relation (4.4.6).
Equations (1.18)—(1.20) will be used later on, but not in the present
chapter, where no more mention will be made of the particle flux #%®,
Before solving the moment equations, it is very important to have a good
insight into their structure.
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We first note that the linearized equations contain no term involving the
gradients of the unknown moments. They are thus a set of first-order ordinary
differential equations, which require only an initial condition, i.e. the value of
the moments at ¢ = 0.

Next, we note that the set of linearized equations splits up into four groups
of mutually uncoupled equations, viz. the electron and ion vector equations and
the electron and ion tensor equations. This feature represents an enormous
simplification. Instead of dealing with a set of 39 equations, we only have to
deal with small groups of equations which are easily solved.

Inside each group, we note a peculiar structure, which further simplifies the
problem.

(a) Vector moment equations. Let h'P [r=x, y, z] be the three components
of a specific vector moment. Consider first the case where there is no magnetic
field, £,=0. In this situation, we see that there is no coupling between the
components of the vectors:

1
3,h'P = ——Z hD + <P>, r=x,y,z. (1.21)

P‘I"

Hence the 3 equations (for r=x, y, z) are identical, except for the value of
the source terms.

Consider now the case when there is a (constant) magnetic field, and choose
a reference frame whose z-axis points along B: b, = §,,. In this situation, we
see from (1.7) and (1.9) that there still exists a partial decoupling. The
equation for the parallel component, hP’, is unaffected by the magnetic field
and thus obeys an equation identical to (1.21). The x- and y-components
(transverse components) are mutually coupled by the magnetic term, and obey
a set of 2 equations:

1
a’hip) .Qh(p) __E pqhaq) (p)’
AN+ QP = — l EC D4 = 1 g(p) (1 22)
iy x T pra’ty :

(b) Tensor moment equations. Let h'?’ (r, s=x, y, z) be any specified
tensor moment. If £ =0, the various components of the tensor are uncoupled
and obey 6 separate equations that are identical, except for the sources:

1 1
9,hP) = —;Zc MO+ g,(”) r,s=x,y, z. (1.23)
q
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In the presence of a constant magnetic field, taking again b,=34,,, th
equations decouple into three sets of equations. The z-z component is
independent of all the others and is unaffected by the magnetic field: it obeys
the same equation as (1.23). The x—z and y-z equations are mutually
coupled:

1 1
a,hg) - ‘Qh;‘zp) = - ',.‘—. Zcpqhii) + ;gif),
q

ra’tyz :gyz

1 1
QD + QhE = — — T cpgh$D + &P, (1.24)
q

Finally, the x—x, x—y and y—y components are mutually coupled *:

1
O ~ 20 = ~ - T, hD + 22,
q9

1 1
— (p)
ath(y‘;) - 29}'3) - T Zcpqh(yg) + ;gy5 >
q

q"xy ;gxy

1 1
Ak ~ (P =KL ) = = - Lepghid + 8. (1.25)
q9

The determination of the 39 unknown moments has therefore been reduced
to a few separate small sets of equations which can be solved, even in presence
of a magnetic field, with only a moderate amount of labour.

5.2. Solution of the linearized moment equations. Asymptotics and
Markovianization. Moment description and thermodynamics

We first consider in this section a particular, simple but non-trivial problem,
which we solve explicitly and in great detail. The discussion in this section is,
in our view, of utmost importance. It will show how the hydrodynamic and
thermodynamic picture emerges from the kinetic equation, i.e. from its moment
representation. Although the mathematics involved here is utterly simple, the
physical interpretation of the results is of major significance.

* We have written six equations for each tensor h{?’: there are, however, only five indepen-
dent components, because the tensor is traceless. It will be found that the solution of these
equations satisfies the conmstraint h¢?) =0 automatically, because the sources are traceless:

(P) =
& = 0.
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We consider the determination of the parallel components of the electron
vector moments in the 13 M approximation. Setting, as usual, the constant
magnetic field in the z-direction, we obtain from (1.7) (with A% =0) and
(1.21),

il(l) = —T_l(cllh(l) + Cl3h(3)) + T‘lg(l),
E® = —171(eh® + ¢ k) + 771D, (2.1)

We have abbreviated here, 7,= 7, h?’ =h?), ¢ =c,,, and similarly for the
source terms g. The latter are taken from (1. 12) and (1.13), whereas the
collision matrix elements are given in table 4.6.3A. We must keep in mind that
the matrix elements c¢,;, ¢4; are positive, and that ¢;; = ¢5;.

We have to solve a quite elementary set of ordinary differential equations
with constant coefficients. Among the several standard methods, we use here
the eigenfunction method [see any textbook on differential equations, e.g.
Pontriaguine (1969)]. It is known that the solution of the differential system
(2.1) is closely dependent on the algebraic properties of the matrix c,,. The
eigenvalues of the latter, A;, are the roots of the characteristic equation

”—T Cpq— AS, ”

It is convenient, as will be seen, to denote the eigenvalues by the notation

A=-0

! T

The numbers r, are therefore the roots of

rZ—(C11+C33)rr+ (C11C33‘_C123)=0. (2.2)
Although this equation is trivially solved, we shall not need the explicit
expression of its roots; it is sufficient to know that they satisfy (2.2), which
also implies the relations

nt+rn=cy3+cy3>0,

= 2

nry=cncy —cp3> 0. (2.3)

The important property of these roots is their positive sign:

r>0, r,>0.
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In order to keep in mind an order of magnitude, we give here their numerical
values (which depend on the charge number Z):

r; =0.390, r,=2.476, [Z =1],
r, = 0.213, r,=2.144, [z =10]. (2.4)
Having found the eigenvalues, the corresponding eigenvectors, satisfying
_,.xfp) Z qqu),
q
are easily determined:

XP) = (‘3’ ___clif_’ilg)’

€13

where B is an arbitrary constant. It then follows that the general solution of
the homogeneous system (2.1) (with g(?> =0) is

hQ (1) = ay &=/ + oy =21/,

c11+r1 _C11+r2
2

[0](t) = _(rlt/‘r) + a e—(rzt/‘r)’ (2.5)

€13

where a;, a, are arbitrary constants. In order to solve the inhomogeneous
system (2.1), we start from (2.5) and use the classmal method of variation of
the constants. We find

RO(£) = ay e~ /D 4 e~ 21/ 4 _l_f’dg
(’1“’2)7 0

X {e_(rl/r)(t_o) [(Cn - ’2)8(1)(0) + c13g(3)(0)]
+e (/M=) [(_Cn + ’1)8(1)(0) - C138(3)(0)] }

and a similar expression for #(z). We now determine the constants a;, , in
terms of the initial condition,

hP(0) = a; + a,,

—cptr —cpptr
h®(0) = L7 4, nth

€13 €13
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A grouping of all these results allows us to write the exact solution of the
initial value problem of eq. (2.1) in the compact form

KO(t)= ¥ GeD(¢) K@) +7' ¥ j”dg GPD(0) g 9(¢—8),

g=13 q=1,3"0
r=13. (2.6)

We have thus explicitly found the propagator G?%9(t) which solves the
initial value problem. It is a matrix whose elements are

GOV(1) = (e =) €MD+ (—ey + 1) €77200),

rn—n

GI(1) = GOV(1) = ‘13 (e=4/D — g=rat/m)

n—n
G (1) = P— ((_Cn +r) et (e — 1) e_’zct/?))- (2.7)
1~ "2
It is easily seen that
GPD(0) =8, (2.8)

and that these functions satisfy the differential equations

GPP(t)= -1 Y c,m GO(2). (2.9)

Equation (2.6) contains the complete information included in the 13M
linearized equations. It also answers the main problem of transport theory, in
providing an expression of the electric current 4"’ and of the electron heat
flux A%® in terms of the hydrodynamic and electrodynamic forces contained
in the sources g and g®®. This answer is, however, not of the “expected”
type. There are two typically non-classical features in this solution.

" (a) The value of the vector moments h{?’(¢) at time ¢ is determined by the
whole history of the driving forces g'?(t — 8) between time 0 and time ¢, rather
than by the instantaneous value g‘?(t). When these expressions are substituted
into the hydrodynamical equations (4.5.3), we obtain an integro-differential
equation for the temperature. This is a typical non-Markovian process: the rate
of change of the temperature 7, at time ¢ depends on the whole previous
history T (¢ — ).
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Fig. 2.1. Matrix elements of the propagator G(9(r).

(b) The expression of 4A?’(¢) depends on its initial value 4‘”’(0). Again,
when this term is substituted into the hydrodynamical equations, it implies
that the solution of the latter requires the knowledge, not only of the initial
data of the hydrodynamical variables, but also of the initial values of the
non-hydrodynamical moments. These are not specified within the frame-work of
hydrodynamics.

We now show that, actually, (2.6) contains information which is irrelevant.
Indeed, in deriving the linearized moment equations (2.1), we have made the
fundamental assumption that the collisional relaxation time 7, is much smaller
than the hydrodynamical time 74, eq. (1.3). We now analyze (2.6) more
closely, in order to possibly detect contributions which are small as a result of
(1.3).

The starting point of our analysis is the study of the propagator G‘??(¢). It
is seen from (2.7) that all its matrix elements are sums of two exponentially
decaying terms. The three matrix elements were calculated from the data of
table 4.6.3A and eq. (2.7) for Z =1, and plotted in fig. 2.1. One can see from
this figure that the initial condition (2.8) is indeed satisfied. But the most
interesting feature is the long-time behaviour of G??)(¢). After a time ¢ = 7r,
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all three matrix elements have decayed to practically zero. But on a macro-
scopic time scale, such an interval is usually very short; indeed, the macro-
scopic times are of order ty. More precisely, we are interested in hydrody-
namics in times ¢ such that

TKIL Ty,

or even
Ty <. (2.10)

Given these facts, it is clear that the first term on the right-hand side of (2.6)
goes to zero after a time of order ¢= 7r. It represents a rapidly decaying
transient. Recalling our qualitative discussion in sections 4.1 and 4.2, we can
make the arguments quite precise at this point. If we start at time ¢ = 0 from
an arbitrarily prepared system, the collisions will quickly bring it to a state
which depends only on the hydrodynamical quantities (i.e. a “normal” state,
close to local equilibrium). In so doing, the collisions wipe out the role of the
initial data A‘?(0). In other words, after a few relaxation times, the system
completely forgets the initial values of its non-hydrodynamical moments.

Let us insist on the following point. The latter sentence does not mean that
the non-hydrodynamical moments vanish. The system tends towards a state
where the non-hydrodynamical moments become functionals of the hydrodynami-
cal variables.

Consider now the second term on the right-hand side of (2.6). We see here
the propagator G7%(8) appearing under an integral extended from O to . But
actually, this integral only extends effectively from 0 to about 7r. Over the
range (77, t) the integral is zero, because its integrand vanishes. Hence,
whenever ¢ is in the range defined by (2.10), the value of the integral is
practically independent of its upper limit. We may therefore, without risk of
error, replace the upper limit ¢ by co: in so doing, we add essentially zero.

As a result of this discussion, (2.6) can be reduced to

h<P>(t)=r12fO°°d0 Gro(0) g9 (1 —9), (2.11)

which is valid under condition (2.10). In other words, (2.11) is an asymptotic
approximation, valid for times much longer than 7. At this stage, the influence
of the initial condition has disappeared. But we may still further simplify this
expression.

Relation (2.11) is still non-Markovian, as h(P)(¢) depends on the past
values of g{?(z— @). However, we now know that the influence of the past
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cannot extend indefinitely. Only the values of g‘9 comprised between ¢ and
t — 71 significantly influence A(”’(¢): beyond that interval, the factor G(#9
() vanishes. We now make the following important remark. The propagator is
a sharply peaked function (over the long time scale 1y, it decays from 1 to 0 in
the short time 77). On the contrary; the hydrodynamical functions g(4(¢) are
slowly varying, compared to G. In the time 77 they change very little from
their value at time ¢. Therefore, over the effective range of variation of G, the
sources can be validly represented in terms of a truncated Taylor series,

§(1-6) ~g®(1) — 0P (1) + 30 P(1) + - - (212)
Substituting this into (2.11) we find

() =Y [(—;(()pq)g(q)(,) + GPDgD (1) + GSPIFD () + - - ]
q

(2.13)

where the constants G*? are defined as
G = (-1)"if°°da 87G#D(9). (2.14)
" nlr 0

A simple dimensional argument (or the explicit integration) shows that
Gr? =y{r9s,, (2.15)

where y{#? is a purely numerical constant.
On the other hand, the hydrodynamical source terms are such that

d'l
(9) t) ~
378 (1)

_1_ €))

78 (1).

It follows from (2.15) that (2.13) is actually an expansion of the moment h'?)(t)
in powers of the small parameter 7v/7y. The first term of this expansion is
proportional to g? = (7/7). Thus, in order to be consistent with our
linearization, in which we only retained first-order terms, we must limit
expansion (2.13) to its first term:

hP(1) = X GrPg (1) + O(r?/7f). (2.16)
q
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This expression defines the classical linear transport theory. Note that we
have used the convenient abbreviation

GPD = G((,M).

The most outstanding feature of this expression is its Markovian nature.
The non-hydrodynamical moments h‘?)(t) appear as simple linear combinations
of the sources g'9(t) evaluated at the same time t. Thus, in going from (2.11) to
(2.16), we have performed a Markovianization process. The intermediate stage
(2.13) represents a so-called pseudo-Markovian representation. It expresses
hP(t) in terms of the sources, as well as of their time derivatives, all
evaluated at time z. The presence of the derivative terms is a trace of the
fundamentally non-Markovian nature of the problem. Equation (2.13) will be
important in a non-linear theory.

The persons who read section 2.6 and Appendix 2A.1 will be struck by the
analogy between the treatment of the present section and the derivation of the
kinetic equation from the BBGKY hierarchy. The non-hydrodynamic mo-
ments play the role of the correlations, the hydrodynamic variables play the
role of the one-particle distribution function. In the kinetic problem we also
have two widely separated time scales: the duration of a collision, 7., and the
relaxation time 7. By exploiting the disparity of these time scales, we went
from the exact, non-Markovian master equation (2.6.3) (analogous to 2.6) to a
Markovian regime where the correlations are functionals of the one-particle
distribution function (analogous to 2.16), passing through a pseudo-Markovian
stage (2.A1.7) (analogous to 2.13). The hydrodynamic problem treated here is
the direct continuation of the kinetic theory. In the present problem, the short
time scale 7 is precisely the long time scale of kinetic theory:

R (2.17)

Kinetic theory is pla)'/ed in the first range, transport theory is played in the
second range.

We now come back to expressions (2.16). Using (2.7), the calculation of the
integrals G‘*? from (2.14) is trivial, and we find

1
V(1) = E(Caag(l)(t) - 6138(3)0)),

1 4
KO (1) = E(—Cng(”(t) + ;g (1)) (2.18)

Recall that the product r,r, is given by eq. (2.3).
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We note that the diagonal elements of this matrix are definite positive
numbers (because c¢;; >0, c;; > 0). This implies the existence of a definite
positive electrical conductivity and thermal conductivity, an important prop-
erty of thermodynamically stable systems. Next, we note the equality of the
cross-coefficients (a result of the symmetry c¢;; = ¢; of the collision matrix).
This is a particular expression of the Onsager symmetry principle (Onsager
1931, de Groot and Mazur 1984).

Last, but not least, we make a remark of considerable practical importance.
We note that the final result (2.18) could have been obtained in a much
simpler fashion. If, in the starting equations (2.1), we simply set ~2(?(¢) =0,
we find

_T—lchqh(q)_,_,r-lg(p):()' (2.19)
q

The solution of this purely algebraic set of equations is eq. (2.18). This fact
implies an enormous simplification of the procedure.

We now state, without proof, the generalization of our detailed calculation.
Consider any subset of moment equations, such as the equations for the
parallel components of the vector moments (1.21), or the equations for the
transverse components of the vector moments (1.22), etc.

In the former case, the generalization of our results is straightforward: we
simply have to consider a larger matrix c,, (e.g. 4 X 4 in the 29M approxima-
tion). The important point is that this matrix still has only real negative
eigenvalues.

In the case of the transverse components, the presence of the magnetic
terms makes the eigenvalues complex, but these eigenvalues still have a
negative real part. As a result, all the elements of the propagator matrices
damp out over a time of order 7,. This property is sufficient for the validity of
an asymptotic Markovian solution of the form (2.16) for each subset of
moment equations. Moreover, the asymptotic solution is obtained by simply
solving the set of algebraic equations, obtained from the initial set of differential
equations by setting all time derivatives equal to zero.

We now point out an interesting and important point. Consider, for
instance, the set of equations for the parallel components of the electron
vector moments (the argument being the same for other subsets of moment
equations), truncated, say, at the 29M level. The corresponding algebraic
equations are (see 2.19)

3

> c2p+1,2q+1hﬁ(2q+1) =gf%*h, p=0,1,2,3. (2.20)
q=0
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The solution of these equations is

3
hECPHD = F GOPH12a+Dgeqt ), (2.21)
q=0

where G is the inverse of the collision matrix. We thus have a (Markovian)
linear relation between the Hermitian moments h®™ and the source terms g=™.
The matrix G is a symmetric matrix (being the inverse of the symmetric
collision matrix). One would be tempted to identify (2.21) with the transport
equations or “phenomenological relations” of non-equilibrium thermody-
namics (de Groot and Mazur 1984). This interpretation would nor be correct,
as will be presently shown. A precise understanding of this point is illuminat-
ing for grasping the nature of the thermodynamic concepts (this problem has,
apparently, not been discussed in previous work).

The main point in the argument is the repeatedly stressed fact that the
source terms are identically zero for g > 2,

g =g M= ... . : (2.22)
Therefore, eqs. (2.21), written out explicitly, are

hD = GWgD 4 GMge® | pe® = GOVM 4 GPIge®),

he® = GVgD + (—;(sé)glele(s), D = GMgM 4 Gge® (2.23)

The first two equations relate the group of privileged moments to the
corresponding set of source terms. These two equations form, by themselves, a
complete set of linear relations, characterized by a 2 X 2 symmetric matrix
(G = GOY). We have here a one-to-one correspondence with the transport
equations of non-equilibrium thermodynamics [de Groot and Mazur 1984,
Prigogine 1969). In the latter framework, one defines a set of fluxes J, and a
set of thermodynamic forces X, these are interrelated by a set of transport
equations

Jo= 2 Ly X- (2.24)

The transport matrix L,,, (whose coefficients are the transport coefficients) has
the characteristic Onsager symmetry, which reduces here to the simple matrix
symmetry L, =L, . Hence, we can identify the thermodynamic fluxes with
the privileged moments and the thermodynamic forces with the source terms.
The non-privileged moments have an altogether different behaviour. These
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moments are exclusively driven by extraneous forces: they do not possess any
conjugate source terms. The last two equations (2.23) do not have the structure
of transport equations (2.24). In particular, the Onsager symmetry principle
does not apply to these moments. The symmetry is simply irrelevant, because
there are no cross-terms associated in pairs. In other words, although the
matrix G?9 is a full square matrix, it is applied to a vector g(#> which has
only two non-vanishing components.

It should, of course, not be concluded that the non- pr1v11eged moments are
irrelevant in transport theory: they determine the value of the privileged ones
indirectly. Indeed, the matrix elements GV, G"¥, G®¥ of the inverse
collision matrix depend, in particular, on matrix elements such as c,,s, ¢,,7,. .-
of the initial matrix. It is for this reason that the accuracy of the thermody-
namic transport coefficients is improved when higher (non-privileged) mo-
ments are included in the approximation scheme.

As for the higher moments themselves, they are driven by the extraneous
forces towards a quasi-steady state defined by (2.23). It turns out that the
values of the non-privileged moments in this state are small, compared to
those of the privileged ones, and decrease as the order of the moment
increases. The relative value of the higher moments is therefore a good
measure of the degree of validity of a particular truncation level, as will be
seen in section 5.4.

Before concluding this section, we briefly discuss another, even more
striking illustration of the difference between privileged and non-privileged
moments. It is provided by the higher-order anisotropies, such as the moments
h%2P*D  associated with the third-rank irreducible Hermite polynomials
H@P*D (see table G1.4.1). None of the moments of this type is privileged.
Therefore, the asymptotic moment equations are of the form

Zczp+1,2q+1hfs(,2q+l)_ 0, (2.25)
q

which have only the trivial solution
he2PTD =, (2.26)

It is quite clear that these anisotropies have no thermodynamic interpreta-
tion. They exist only as transient quantities, living for a time of order 7,, after
which they decay to zero. Moreover, in a linear theory, these higher-order
anisotropies (in contrast to the vectorial and second-rank tensorial moments)
do not influence at all the thermodynamic transport coefficients. Indeed, their
equations of evolution are completely decoupled from the former.
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5.3. The classical transport coefficients

We now present systematically the results of the classical transport theory. The
outcome of this theory is a set of linear relations connecting the privileged
moments h®D, h*®, h*d to their conjugate sources. We shall mainly con-
centrate on the 2IM approximation (for reasons to be explained), but shall
also give the results of the 13M and (in some cases) of the 29M approximation.
We assume that there is a constant, uniform magnetic field present and that it
is directed along the z-axis: b, =§,, *.

A. Electron vector moments

(a) Equations. The basic (algebraic) equations determining the asymptotic
values of the Hermitian moments, valid for times much longer than the
electron relaxation time 7., are obtained from (1.7) by annulling the time
derivatives:

- ‘QeTeh;(p) + ZC;qhi(q) = g,f(p),
q

@ — ge(p)
Qe b7 + Lo hS P = g5 7,
q

Zczqh:(q)=gze(p)7 p=1, 3, 5’ (7)' (3'1)
q

The electron Larmor frequency 2, (a negative quantity!) was defined in (1.6),
the electron relaxation time 7, in (4.6.4), and the source terms g” in
(1.12)-(1.13). We made here the (provisional) convention h*D = p®, ge =
g®. Note that all the quantities appearing in these equations are dimension-
less. There are two privileged moments in this group: A®, h*®; the higher-
order source terms vanish identically: g*® = g®? =0,

(b) Solution in dimensionless form. We write the solution of (3.1) for the
privileged vector moments in the form

1) _ ~11 1 ~(13 3
hY = GIVgd + GPVgs®,
3) _ ~(31 1 ~ (33 3
hf( )= Gr(s )g.g )+ Gr(s )gse( )' (32)

* The results are approximately valid also if the direction and the intensity of the magnetic
field vary very slowly in space. In this case, the reference frame (e,, e,, e,) is to be interpreted as
a local frame. However, a full discussion of the transport theory in presence of an inhomogeneous
and curved magnetic field has to await the treatment of vol. 2.
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The coefficients G#? are constants, depending on the magnetic field
through the combination 2.7.. The following remarkable symmetry relations
are found.

(1) For all components r, s =(x, y, z),

Gy =G5V, (3.3)
(2) For each couple of moments p, ¢,

gifq) = é}fypq), 5}554) = — (_;}ff"),

Gir? =GP = G = Gy =0, (34)

Hence, for each couple ( pq), the matrix G'? has exactly rhree indepen-
dent coefficients. We may therefore write

1) _ ~(11 1 ~(11 1 ~(13 3 ~(13 3
WD = Gl — GVgh + Ggs — G,
1 ~(11 1 ~ (11 1 ~(13 3 —~ (13 3
WP = G + G g + GLge + G0,
1) _ ~(11 1 ~(13 3
hD =G VgV + G g, (3.5)
and similar relations for A*®. The deeper significance of these symmetry
relations will be discussed in detail in section 5.5.
Relations (3.5) can be expressed in a more compact form, independent of

the particular reference frame chosen here. In order to do so, we note that, for
any vector s = (s,, 5,, x,) we have

b(b-s)=(0,0,s,),
bAs=(-s,, s,,0),
bA(sAb)=(s,, s, 0). (3.6)

We may then rewrite eqgs. (3.2), taking account of all the symmetries, in the
form

K = b[6,(gV+5) + & (g°+5)] +bA (6, gV +&, g°°)
+bA[6, (g0 Ab)+a, (g Ab)],
JRc) =b[&”(g(1)°b) + ,;”(geO).b)] +bA (&, g0 +ic g°®)

+bA[a, (gVAb)+r (g nb)]. (3.7)
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We have thus introduced nine independent dimensionless transport coeffi-
cients: three electrical conductivities G,, three electron thermal conductivities Ky,
and three thermoelectric coefficients d, (A= ||, L, A). They are easily identi-
fied:
~ | ~ ~(11 ~ ~(11
o||=Gz(;1)’ g, =G)§x)’ 0A=G)Ex )’
and similar relations for k5, &,.
(c) Solution in dimensional form. Before giving the explicit expressions of the

dimensionless transport coefficients, we transform (3.7) into dimensional
relations, using eqgs. (4.4.4), (4.3.18), (1.12) and (1.13). We then obtain

j=bloy(E-b)+a(-VT)b] +bA [0, E+a,(-VT)]
+bA [0, (EAb)+a, (-VT)AB], (3.8)
g°=blaT.(E+5) +k§(~VT.) 8] +b A [a, T.E+ (- VT.)]
+bA[a, T.(EAb)+x%(-VT.) AB], (3.9)

where the modified electric field is defined as

L o(n.1). (3.10)

E=E+ l(u/\B)+
¢ en,

The dimensional transport coefficients are related to the dimensionless ones
as

e‘n

0y == =T, Oy, A=(ll, A, L), (3.11)
5 en,

ay=\5 =% & A=(|, A, L), (3.12)

[ 5 nez.'e ~C

KA=§ m Te Ka>» A=(”, /\9 J—) (313)

[

Equations (3.8)—(3.13) represent the final form of the linear relations
between the fluxes j, q° and the driving forces E, (—VT,) in the “classical”
transport theory. The explicit expressions of the dimensionless transport coeffi-
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cients are collected in table 3.2, at the end of this section, both in the 13M and
in the 21M approximations. They will be discussed in detail in the forthcom-
ing sections.

B. Ion vector moments

(a) Equations. This problem is simpler than the corresponding electron
problem. The ion vector moments are not coupled to the electric current hA{D:
this reduces the number of equations to be solved in each approximation. The
basic equations are now obtained from (1.9),

_QiTihiy(p) + Zc;qhix(q) — g)ic(p),
q
‘QiTihix(p) + Zc;qhiy(q) — g;(p),
q
Yl h@ =g P p=35 (7). (3.14)
q

The ion Larmor frequency £2; (a positive quantity!) was defined in (1.6), the
ion relaxation time ; in (4.6. 10) and the source terms gi»’ in (1.15). There is
only one privileged moment in this group: #®; the higher-order source terms
are identically zero: gl® = gi® =0,

(b) Solution in dimensionless form. Proceeding as above, we find the simpler
relation, replacing (3.7),

RO=gl b(b-g' @)+ &, (A D)+ &, [bA (gD Ab)]. (3.15)

The dimensionless ion thermal conductivities &\, are listed in table 3.2 at the end
of this section.
(¢) Solution in dimensional form. The ion heat flux q' is found to be

g'= -k b(b-VT)—k'"\(BAVT)—k' [bA((VT)AB)]. (3.16)

The three independent ion thermal conductivities k!, are related to the
dimensionless ones by

.S nT
Kh==——mnRy, A=\, A, L. (3.17)

m;

(8]
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C. Electron tensor moments
_ (a) Equations. As follows from the discussion in section 5.1, egs. (1.8) (with
A%P) = 0), split into three mutually independent blocks:

20 kP + TS D = gD 20 kD + XS hD = gslp,
q q

_Qe,,.e(h;(yp) _ hi(xp)) + Zc;qhi(yq) = &fﬁp)’
q

€ "xz

—Qa P+ L D =g, kP + Yk b = g,

q q
Tef hO =g5P, p=2,4,(6). (3.18)
q

There is one privileged moment in this group: A%?; the higher-order source
terms vanish identically: g%* = g® =0,

(b) Solution in dimensional form. We directly turn to the dimensional form
of the solution. We introduce the usual form of the thermodynamic force
(which includes a factor 2) (de Groot and Mazur 1984, Braginskii 1965) by

means of the symmetrization operator (4.5.28),
V=29 pq Vollg . (3.19)

We find, using (4.3.17) and (1.14), the following expressions (with a =e) for
the components of the dissipative pressure tensor:

7. = — (0l +n5) v — 1(n — %)y, + 05 v,

a_ __1 a __ .a 1 a a . ¢
my, = = 3(nf — n2) v — 2 (0] + 1%) 2, — 5 v,
a __ _ 1 «a 1. a I a _ _ a a
Ty = 2M3 Vxx+ 273 Vyy N4 ny’ T = — M2 sz+n1 Vyz’
a_ _ a a a_ _
Wyz_ M Vx: M2 Vyz’ e = n|| Vz- (320)

" There appear five independent electron viscosity coefficients, which are of
the form

ng=nT1.7 % B=],1,2,3,4, ° (3.21)

where %% are the corresponding dimensionless coefficients, listed in table 3.2
at the end of this section.
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Equation (3.20) can also be written in the form *
7= =y — gy @ - v =i v 3D, (3.22)

rs

where we define the tensors

(v +7,,) 0 0 0 0 v,
D = 0 %(Vxx + Vyy) o1, y@=1 0 0 Yy, |
0 0 v,, v, ¥, O
%(Vxx_vyy) Vyy 0
(G
Vo= ny '—%(Vxx_vyy) 0}
0 0 0
0 0 -,
V(l) = 0 0 Vez |»
~v, Y 0
—Vxy %(Vxx—vyy) 0
) —
14 = %(Vxx — pyy) ny O . (323)
0 0 0

This rather complicated structure of the pressure tensor in a magnetic field
will be discussed in section 5.5.

A very remarkable relation between the viscosity coefficients emerges from
the calculation (this relation was first discovered by Braginskii 1965):

n‘;('QaTa) = n‘; (Z'QaTa)’ n‘;('QaTa) = n‘l!(z'QaTa)‘ (324)
This relation holds independently of the level of truncation.

D. Ion tensor moments

The equations for the ion tensor moments are exactly of the same form as
(3.18): one merely needs to change all the superscripts e into i: ¢ — i. We then
find the same solution as (3.20), with a =1i. The relation between the dimen-

* The notation adopted here is different from the one used by Braginskii (1965), in particular
in the labelling of the terms. The reason for this relabelling will be justified in section 5.5 (see
footnote after eq. (5.49)).
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sional ion viscosity coefficients and their corresponding dimensionless coeffi-
cients, listed in table 3.1, is now

mp=nTi 7 i, B=1,1,2,34. (325)

E. Collected values of the transport coefficients
In order to express the dimensionless transport coefficients in a form as
compact as possible, we introduce the following notations:

¢l co

a _ .a .a _ aal a _ .
Dyq=cppcqq—¢ CprC paCar>

prtaq” “pg> par— aa~
S¢=cS2+ ¢S + 82+ 252+ 2¢52 + 252,
Ff3s = c5s Dy — ¢35 H3)s — cfs Hyss. (3.26)
The magnetic field always enters through the combinations

X, =Q.r (3.27)

[do not forget that x, < O0!]. We introduce the following functions of the
magnetic field:

Gs(xe) = Dif + (cff + 55 + 263 ) xd + x¢,

Gis(x;) = D3 + (35 + i + 2633 ) x{ + x{,

Plys(x,.) = Fis+ (Dfs2 + D§? + D§? + 2 HSys + 2H%s + 2Hf523)x3
+8°x2 + x§,

G5a(x0) = D + (e53 + e+ 253) 2 + 8

* For the reader’s convenience, we collect in table 3.1 the numerical values of
the collision matrix elements (computed from table 4.6.3): these will enable
him to quickly calculate the value of any transport coefficient, for arbitrary
values of the charge number Z. [Note that Braginskii (1965) gives no analytical
values of the coefficients, but only numerical values for Z=1, 2, 3, 4, o0}

The analytic expressions of the dimensionless transport coefficients,
evaluated both in the 13M and in the 21M approximations, are collected in
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Table 3.1
Numerical values of the collision matrix elements

Electron vector fluxes

= 10000 3= 1.3000+0.5657Z~1  c§5= 1.5464+0.9091 Z~!
Sy= 09487  c5=—13040—0.3207Z"!  ¢5;=-1.5703-0.8681 Z!
S5 =—08964 5= 12730+0.1637Z! 5= 1.7601+3.1659 Z"
;= 0.8539

Electron tensor fluxes

S, = 12000+08485Z7 1 5= 1.4571+1.0354 Z7!
5, =—09621-03402 Z~! 5= —1.3286--0.4828 Z !
S= 0.8018+0.1417Z7 ' 5= 1.6786+1.9177Z7!

Ion vector fluxes
cly= 05657 cls= 09091

cjs=—03207  ci;=—0.8681
c;= 01637 ;= 31659

Ion tensor fluxes

chy= 08485  cy= 10354
che=—03402  cis=—04828
che= 01417  clg= 19177

table 3.2. These quantities are functions of the dimensionless parameters Z,
X., X;. In particular, the parallel transport coefficients only depend on Z.

Finally, we collect in table 3.3 the relations between dimensionless and
dimensional transport coefficients.

5.4. Numerical values of the transport coefficients. Convergence of
the approximation scheme

The results collected in table 3.2, combined with the values of the coefficients
given in table 3.1, enables one to calculate immediately the numerical values of
all the dimensionless transport coefficients. These depend on two parameters:
the charge number Z and the product x, = Q_1,.

In a first group of graphs (figs. 4.1a-d) we plot the parallel electron
transport coefficients (which are independent of x.) as functions of Z. (Note
that the dimensionless ion transport coefficients are independent of Z'). The
shape of these curves will be discussed in the next section. Here we want to
concentrate on the convergence of the successive approximations. The graphs
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Table 3.2
Dimensionless transport coefficients.

Coefficient 13M Approximation 21M Approximation
Electrical conductivity
LA ¢33/Di3 D55/ Fizs
6 A (xe) exe 53 + i} +x2) R [(Ds? + His + Hi)
13(’%) P135( Xe)
+(8° = eff — eff — eiD)xd + x{]
o, (x.) 53 D53 + cfix2 D35 Fiys + (53 D55 + c§5 Dfs +2c5sHy15) x2 + ¢
e Gh(x.) Pis(x.)
Thermoelectric coefficient
&, — i3/ Dy — Hig3/Fiss
&, (%) e e+ S) — e (DS, + DS Hg
PN 1 + ¢33 15 35) 153
© Gh(x.) Pis(x.)
+[c53( ) + €53)+ cfse5s1x2 )
_c Dy,
(xo) D(Dh —x2) ~{His3Fiys +(c5s Hys + c5s HEzs — ¢35 HE
1 (xe 1534135 15315 + €35 Hy3s — 558153
ll(xe) .
+c§3Di)x2 = x2} { Phys(x)} !
Electron thermal conductivity
'?|e| ch/Di; D55/ Fiss
75 (x0) — Tt (e xd) - (D + HEE + HD)
1a(xe) Piis(x.)
+(S°—f} — 53 — 5D xd + x{]
2
(%) cn1Dfs + e53x¢ Dfs Fiys + (51 Df; + ¢§5s D5 +2¢§s Hiys ) x2 + ¢
1 e
§3(xe) P1e35(xe)
Electron viscosity
iy 1/¢5, ¢4/ D3,
~ xe xe
fii(xe) ~ e 3 - (c2+ 52+ xD)
¢ e +x? Gsa(x)
75 (L) ) ciaD5s + c5x2
M Xe e2 2 GS
cn +xg 2a(xe)
Ion thermal conductivity
K| 1/c3 ¢35/ Djs
& (x) a —S (2 + )
& (x -— s+ 3 + xj
e+ x? G;s( x;)
X -
() €33 cssts + c33%;
i SR TITY S
a3+ xl Gis(x;)
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Table 3.2 (continued)

Coefficient 13M Approximation 21M Approximation
Ion viscosity ) ‘
) 1/en Cha/Dia

i Xi Xi i i
Mnx;) T —i—'(043+0224+xi2)

et X Gia(x;)

.;ii (x ) 6;2 CiAD;4+Ci22xi2

w B +xl Gaa(x))

clearly show that the accuracy of these approximations depends on the
particular coefficient considered. Thus, the 13M approximation is quite good
for the electrical conductivity and for the thermoelectric coefficient (at small
Z). In general, however, the 13M approximation underestimates most transport
coefficients, especially for high Z. The situation is particularly bad for the
electron thermal conductivity and viscosity, where the approximation is off by
a factor 2 or 3.

Table 3.3
Relations between dimensional and dimensionless transport coefficients.

e’n
Electrical conductivity o=~ £ 1,82, x,)
e
en
Thermoelectric coefficient = XA \/5 @,z x,.)
e
n
Electron thermal conductivity xG= ':' 282, x,)
e
Electron viscosity 1 =n.T, 1, 13(Z, x.)
.om T .
Ton thermal conductivity kY= # T2 R(Z, x,)
i
Ton viscosity g =n,T 7, 75(Z, x;)
3 mlaTie 3 ml/2T3/2
‘re € € ‘ri 1 1

- 427 Z%%n, In A ’ - 427 Z%*n.In A ’
1 1

n A 253-1.15log n; +2.310gT,; T.=T;>50eV,
" \eq.(4.6.5) in the general case.
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Fig. 4.1. (a) Parallel electrical conductivity;, (b) parallel thermoelectric coefficient; (c) parallel
electron thermal conductivity; (d) parallel electron viscosity.

A pleasant surprise comes from the fact that the next step, the 2IM
approximation provides us already with the practically exact result. Indeed, we
calculated these coefficients in the 29M approximation as well and the results,
in most cases, are indistinguishable from the 21M result [see table 4.1]. This
point was actually noted already in the old work by Landshoff (1951) and
quoted by Spitzer and Hdarm (1953). The result is confirmed in the similar
work by Kaneko (1960), who used 6 Laguerre-Sonine polynomials, i.e. vector
Hermite polynomials up to p =13 (for the vector fluxes). Beating his own
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Table 4.1
Parallel transport coefficients in three successive approximations (Z =1).

Coefficient Approximation
13M 21M 29M

& 1.932 ' 1.950 1.953
a -0.982 -0.877 —0.886
&5 1.036 1.659 1.687
& 1.768 2.210 2253
i 0.488 0.731 0.731
iy 1178 1.356 1.357

record, Kaneko took up the problem again in two papers (Kaneko and
Taguchi 1978, Kaneko and Yamao 1980), where the Chapman-Enskog method
was extended to 50 Laguerre-Sonine polynomials! These works confirmed the
previous findings and provided transport coefficients accurate to 6 decimal
figures, a precision far beyond the needs of experimental plasma physicists.

Figures 4.2a—f show the transverse components of the transport coefficients,
for Z=1, as a function of x,. We see again that the 13M approximation is not
very accurate for small values of x,. In general, it does not even reproduce
correctly the shape of the curves. However, for large values of x,, the 13M and
21M curves tend to coalesce. This is an indication of an important general
result, to be discussed in section 5.6: all the approximate values of the
transport coefficients tend, for x, > 1, toward a common value, independent
of the approximation. :

In order to get an idea about the effect of the charge number Z on the
convergence of the approximation for the transverse coefficients, we show in
figs. 43A, B, two samples of calculations, done in the most extreme case,
Z = . We see that the perpendicular conductivity §, is quite well approxi-
mated by its 13M expression over the whole range of x.. The same statement
holds for 6 , and, to a lesser extent, for the thermoelectric coefficients. On the
contrary, the discrepancy between the 13M and the 21M approximations of
the thermal conductivity is very badly enhanced as Z increases. This could
have been expected from the behaviour of the parallel & (fig. 4.1c). The
interesting point, however, is that the large discrepancy only occurs for
moderate values of x.. Beyond x.=1, we see again the convergence of the
results toward a common asymptotic value.

An interesting calculation can be done in order to understand the physical
origin of the peculiar type of convergence found here. We have discussed till
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Fig. 4.2. (a) Transverse electrical conductivities (Z =1); (b) transverse thermoelectric coefficients
(Z =1); (c) transverse electron thermal conductivities; (d) transverse electron viscosities (Z =1);
(e) transverse ion thermal conductivities (Z =1); (f) transverse ion viscosities (Z =1).
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Fig. 4.3. Transverse transport coefficients for Z = oo. A. Perpendicular electrical conductivity. B.
Perpendicular electron thermal conductivity.

now only the values of the privileged moments. But we may use our equations
for calculating the remaining moments as well. We know from section 5.2 that
these are driven by the same forces as the privileged ones. A simple illustration
is provided by the tensor moments in absence of a magnetic field. All these
moments are of the form

hgs(2p) = *a(2p)gg(2p)’ p>1. (4.1)

The coefficients #°?”, for p>1, are thus a measure of the size of the
moments h*?”) in the quasi-steady state. Table 4.2 gives the values of the
coefficients §*?”), calculated in the 13M, 21M and 29M approximations. It
shows that, for Z = 1, the moment h%® is about 0.5 of h2®, whereas h2® is
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Table 4.2
“Higher-order viscosities” in successive approximations.

Coefficient Approximation

13M 21M 29M
i 0.488 0.731 0.731
5@ 0.382 0.383
i 0.001
i 1.178 1.356 1.357
i@ 0.446 0.452
Hi© 0.013

only 1% of the privileged moment (for ions). This clearly explains why the
13M approximation, which neglects %, gives such a bad result.

5.5. Discussion of the transport equations

The classical theory of transport is characterized by a set of closure relations
expressing the fluxes as linear combinations of the driving forces, with
constant transport coefficients. Such relations will henceforth be called trans-
port equations. This terminology is clearer than the more usual denomination
“phenomenological relations”. We are here in the domain of linear non-equi-
librium thermodynamics. All the general principles derived in that field are
applicable here (Prigogine 1947, 1969, de Groot and Mazur 1984, Misguich
and Balescu 1984).

A. Transport in the absence of a magnetic field

In this case the unperturbed system is isotropic. A simple symmetry
argument shows that the transport coefficients are scalars in this case. The
transport equations reduce to

j=o E+a (-VT,), (5.1)
g=oT, E+« (-VT,), (5.2)
g' =« (-VT)), (5.3)

7= (—»). (5.4)
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Although we discuss the problem of transport without magnetic field, we
retain the notations with a “||” subscript. Indeed, we know that all the
conclusions reached here remain valid for the parallel transport coefficients in
the presence of a magnetic field.

It is easily checked from the expressions given in table 3.2 that the
following relations hold for x, = 0:

o, =0, o,=0, [x,=0] (5.5)
with similar relations for a, «*. Moreover,
=n=11, ni=n5=0, [x,=0] (5.6)

which confirm eqgs. (5.1)-(5.4).

Equations (5.1)-(5.4) can be analyzed from the point of view of non-equi-
librium thermodynamics. They are a set of linear relations connecting five
dissipative fluxes (j, q°, q', w°, @) to four thermodynamic forces
(E, —vT,, —vT, —v). Why are there four, rather than five forces? This is
because the velocity gradient » drives both the electron pressure tensor (or
momentum flux) and the ion momentum flux in the same way: only the
coefficient of proportionality is different.

In principle, all the fluxes can be coupled to all the forces, thus producing a
variety of cross-effects. But actually, there exist “selection rules”: certain types
of couplings are not allowed. First, a general principle, known as Curie’s
principle (de Groot and Mazur 1984) excludes all linear couplings between
fluxes and forces of different tensorial nature. This is confirmed in our kinetic
result: the pressure tensors #* are not coupled to the vector forces.

We now discuss the vector equations (5.1)-(5.3). The occurrence of two
distinct temperatures (hence of two distinct forces VT, v T;) as well as of two
distinct heat fluxes ¢°, ¢ is a peculiar feature of plasma physics, which differs
from the usual formulation of the transport equations, in which only one
temperature and one global heat flux appear (de Groot and Mazur 1984). The
relation between the two descriptions is discussed in detail by Misguich and
Balescu (1984). The peculiarity results from the great disparity in the electron
and ion masses, p < 1.

" This same disparity explains the absence of any coupling between the ion
heat flux and the “electronic forces”, E and v T,. Indeed, the decoupling
results from the fact that the ion collision matrix elements c,i, 4 contain only
contributions from the ion-ion collisions, not from the ion—electron collisions,
which are smaller by a factor p (see eq. 4.6.32). It follows that (5.3) is a purely
diagonal transport equation, which is simply the Fourier law for the ion heat
conduction.
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We are now left with eq. (5.1) for the electric current and eq. (5.2) for the
electron heat flux. Here appears a real, non-trivial cross-coupling effect: each
of the fluxes is driven by both forces E and (— vT,) where, in absence of a
magnetic field (see 3.10),

E=E+(en,)) 'vP.,, [B=0]. (5.7)

Simple limiting situations arise in two cases. When the system is spatially
homogeneous, i.e. when all the gradients vanish, (5.1) reduces to

j=9,E. (5.8)

Thas is the well-known Ohm law. Note, however, that the electric field will
also produce a heat flux, because of the non-zero cross-coefficient «j,

=T E. (5.9)

This is related to the Peltier effect studied in non-equilibrium thermody-
namics of metal thermocouples.

Another simple limiting case arises when there is no electric field, E=0,
and moreover, the electrons are in mechanical equilibrium, i.e. VP, =0 (or,
more generally, when the electric field precisely compensates the electron
pressure gradient). In this case, £ = 0 and (5.2) reduces to the ordinary Fourier
law for the electrons,

q°=—x; VT, (5.10)

Note again that in this case, the electron temperature gradient produces an
electric current, because of the cross-coefficient o,

j=-—q VT, (5.11)

This is the thermoelectric effect of non-equilibrium thermodynamics.

In the general case, the two fluxes and the two forces are coupled by a
transport matrix, that possesses the fundamental Onsager symmetry, which
was already previously discussed in section 5.2.

Let us now discuss the values of the transport coefficients from table 3.3. In
the absence of a magnetic field, all the dimensionless coefficients L. (where L
denotes any transport coefficient) are simply numbers, i.e. combinations of the
matrix elements c,,. It follows that all the (dimensional) transport coefficients
are proportional to the relaxation time 7. This important feature can be easily
understood. It implies that, as the collision frequency ;! increases, the
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transport coefficients decrease. In other words, the collisions tend to oppose
the transport of matter, momentum and energy: they act as an obstacle to the
free flow of these quantities. This intuitive picture would imply that in the
limit of no collisions (7, = o0), the fluxes would become infinite. This conclu-
sion is, however, incorrect, because the assumptions made in this chapter
break down when 7, is too large (see eq. 1.3). The problem of “collisionless
transport” must be handled quite differently, as will be seen later.

We now use the results of table 3.3 in order to express the transport
coefficients explicitly in terms of the density and the temperatures. If we treat
the slowly varying Coulomb logarithm as a constant, we introduce the abbrevi-
ation

g3
427In A’

and find
o, =Ae *m V*T*Z71 6,(Z),
a,,=Ae‘3m;1/27;3/22‘1\/§_&"(z),
ke = de~*m7 2T 223|7'% k2(2),
ny = de~*ml* T\ 223 i5(2), (5.12)

where we use the obvious notation Z,= —1, Z,=Z.

These formulae show that the temperature dependence is particularly im-
portant for the thermal conductivities and the viscosities. This implies that the
heat equations, obtained by substituting (5.2) into the temperature equations
(4.5.3), (4.5.4) (for u=h"® = 0) become typical non-linear equations:

2 o
AT =5,V [ki(T) vT]. (5.13)

with «(T,) ~ T)/%. The type of heat propagation governed by such an
equation is quite different from the usual linear heat conduction (see Landau
and Lifshitz 1963).

Another remarkable feature is that the classical transport coefficients do not
depend on the density. This feature is typical of the weak coupling approxima-
tion entering the Landau equation. It is actually the only common point
between the transport coefficients of a plasma and of a dilute ordinary gas.
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An important remark pertains to the relative size of the electron and ion
transport coefficients. From (5.12) we obtain

i
S

~

i i -3 'EI‘I(Z) T'_i”= ~1a( L i —zfﬁl(z)
) %@ o« (T) T w@)

(5.14)

F1/2(

]

€
K

The most significant point here is the different appearance of the factor p.
It shows that, most often, the ion thermal conductivity is much smaller than
the electron thermal conductivity. On the contrary, the ion viscosity is larger
than the electron viscosity. Thus, for B = 0, the energy is mainly transported by
the electrons, whereas the momentum is mainly transported by the ions. The latter
part of this statement could, however, become invalid if the electron tempera-
ture greatly exceeds the ion temperature, or if the ions are highly charged.

B. Transport in the presence of a constant magnetic field

In this case, the unperturbed plasma is anisotropic, hence the transport
coefficients are tensors, rather than scalars.

Relations (5.1)—(5.4) become

Jjr=04(B)E, +a,(B)(-V.,T.), (5.15)
;= (B)T, E, + ;. (B)(-V.T.), (5.16)
q;=x;(B)(—V,T;), (5.17)
72 = Wmn (BY(—= Vun)- (5.18)

(a) Vector fluxes. We first discuss egs. (5.15)-(5.17). The electrical and
thermal conductivities and the thermoelectric coefficient are now second-rank
tensors. Their structure is, however, not arbitrary: indeed, it is determined by
the overall symmetry of the system (de Groot and Mazur 1984).

In absence of the magnetic field, the plasma is isotropic. When the field is
switched on, there appears a privileged direction, but the system remains
isotropic in the plane perpendicular to B. As a result, the transport tensors o,
a ., k% must remain invariant under any rotation around the axis B. Let

rs> rs
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L(B)=(L,(B)) be any one of these tensors, and let R be a matrix repre-
senting an infinitesimal rotation around the z-axis, taken parallel to B,

R=

1 a O
—a 1 0]. (5.19)
0 0 1

The invariance of the transport tensor is expressed by the conditions
L,(B)=R,,R,L,,(B)=L,(B). (5.20)

Performing the transformation explicitly, one easily finds that these conditions
imply

Lxx(B)=Lyy(B)’ ny(B)= - yx(B)a
L.(B)=L,(B)=L,(B)=L,(B)=0. (5.21)

Thus, the condition of isotropy in a plane perpendicular to B requires that
all the transport tensors be of the form

L,(B) L.(B) ©
L=|-L,(B) L,(B) 0|. (5.22)
0 0 L,

Thus, each transport tensor must have exactly three independent elements:
L,, L,, L,. This requirement agrees perfectly with the results of table 3.2,
obtained from kinetic theory.

The non-diagonal transport coefficients give rise to a variety of peculiar
phenomena (or “effects™), which have been known for a long time (especially
in metals) and are described in books on non-equilibrium thermodynamics.
Thus, an electric field in the x-direction can produce a current in the
y-direction: this is the Hall effect, related to o ,. A temperature gradient in the
x-direction produces a heat flux in the y-direction: this is the Righi—Leduc
effect, related to % . Even more interesting are the “doubly-crossed” effects.
An electric field along x produces a heat flux along y: the Nernst effect; a
temperature gradient along x produces an electric current along y: the
Ettingshausen effect; both are related to a .

Thermodynamics does not require a definite sign for these non-diagonal
coefficients (as it does for the diagonal ones, L, L,): this explains their
possible negative sign (see figs. 4.2, b, e). Actually, they enter the transport
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matrix (5.22) with both signs. It will be shown in chapter 6 that these
phenomena can be called non-dissipative fluxes in a quite precise sense.

We now introduce an alternative representation of the transport tensors
L(B), which has the advantage of being intrinsic (i.e. valid in all reference
frames, not only in the particular frame used here). Let us define a right-handed
triad of mutually orthogonal unit vectors (e, e,, b), where b is directed along
the magnetic field. They obey the usual relation

e Ne,=b.

This triad is of the same kind as the ones introduced in section 1.4. The
orientation of the transverse vectors e, e, is arbitrary. (This formulation will
be easily generalized to the case of an inhomogeneous magnetic field, when the
vectors e;, e,, b are defined locally.)

We now introduce a “basis” of nine matrices which enables us to represent
any 3 X 3 matrix as a linear superposition of basis matrices. The idea is very
similar to the one used in section 1.6 for the study of 2 X2 matrices. We
define the following combinations of dyadics:

S, =e,b + be,, S, =be, +e,b, S, =¢ee, + e,

S,=ee;+ eze,, S;=ee, —e,e,, S,=Dbb, (5.23)
and

A, =e,b— be,, A,=be, —eb, A;=ece,—eye,. (5.24)

Clearly, the six matrices S, are symmetric, whereas the three matrices A,
are antisymmetric. We quote here a few additional properties, which are easily
derived:

S,+8,=1I, (5.25)
TrS,=1, TrS,=2. (5.26)

all the other matrices have zero trace. These matrices have the orthogonality
property

sm: An =0, sm : sn = (2 - 8n,0)8mn‘ Am: An = _28mn' (527)
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We now come back to the transport tensor L of eq. (5.22). 1t is easily seen
that it can be represented in an arbitrary frame, as

L(B)=L bb+L,(B)(ee, +ese;)+ L, (B)(ee;,— ezey). (5.28)
This is easily translated in terms of the basis matrices,
L(B)=L|| S,+L,(B)S,+L,(B)A,. (5.29)

This is the most general form of a second-rank transport tensor compatible
with the requirement of isotropy in the plane perpendicular to b. The interesting
and important point is that it only involves three out of the nine basis matrices.
It manifestly exhibits a symmetric and an antisymmetric part,

L(B)=L®(B)+ L™ (B), (5.30)
with
LO(B)=L,S+L,(B)S,, L®(B)=L,(B)A,. (5.31)

We now consider the parity of the transport coefficients under an inversion of
the magnetic field: B— — B. This point is a little bit tricky. If we look at the
results of table 3.2, we would be tempted to say: all the coefficients depend on
B only through the quantity £2,| B|/mc. Hence, they are all invariant under
a change B — — B. But this conclusion is wrong. The reason is the peculiar
behaviour of the Lorentz force, which is defined through a vector product. The
easiest way to obtain the correct transformation rule consists of starting from
the initial moment equations (1.7-1.10). They involve the magnetic field only
through the Lorentz force term,

Q,heP) — Qe hEPh = ...

rmn-"m

where the right-hand side is independent of B (the tensor equations are of a
similar form). Changing B to — B is equivalent to the change of the unit
vector b — —b,

a,h‘,'“’) + 2,6 h““’)b,, = ...,

rmn-"m

This same transformation can be performed by leaving & unchanged, but
changing

Q2,—- -2, (532)
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Hence, we get the following practical rule: the magnetic field inversion in
the final results, in particular in the transport coefficients, is done by transfor-
mation (5.32). We then note the following behaviour, obtained from the results
of table 3.2:

L, is independent of £,
L, (®,) isaneven function of £,, (5.33)
L,(2,) isanodd functionof £,.

We may now check the Onsager symmetry which, in the presence of a
magnetic field, requires for each transport tensor (de Groot and Mazur 1984)

L, (B)=L,(-B). (5.34)

We consider separately the symmetric and the antisymmetric part of each
tensor, and perform the field inversion by the rule (5.33),

LO(2,) = L(~2,) = L9 (- 2,),
L2, = L (= 2,) = ~LP(-2,). (535)

The first equality is required by the Onsager principle, the second by the
parity under matrix transposition. This result is in perfect agreement with the
kinetic theory result (5.33).

Of course, the Onsager principle also requires, as before, the identity of the
tensor relating j to (—V7,) and of the tensor relating ¢° to Tef .

In the limit of a vanishing magnetic field, £, — 0, the even and odd
transport coefficients have a different behaviour:

L,(B=0)=L,, L,(B=0)=0. (5.36)

It is clearly seen from (5.22) that the transport tensor then reduces to L/, in
agreement with the isotropic transport laws (5.1)-(5.3).

In order to understand the dependence of the transverse coefficients on the
magnetic field intensity, we must recall the characteristic motion of the charged
particles in such a constant field. We know that their motion parallel to the
field is unaffected by the latter, whereas their transverse motion is completely
impeded. For a very strong magnetic field, the particles would “stick” to the
field lines, and there would be no transport in any direction perpendicular to
B.

This situation is opposed by the collisions: the latter make the particles
jump from one field line to another, thus making a transverse transport
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Fig. 5.1. The three electron thermal conductivities (21M; Z=1).

possible. The role of the collisions is therefore completely opposite in the
parallel and the transverse directions. In the parallel direction, the collisions
impede the transport, hence L, is an increasing function of 7,. In the
transverse direction, the collisions favour the transport. Thus, for large values
of the parameter x, = £,7,, i.e. for large magnetic fields and /or small collision
frequencies, the coefficients L, , L , are decreasing functions of x,.

This situation is clearly illustrated in figs. 4.2, as well as in fig. 5.1, which
demonstrates the effect by combining the three components of the electron
thiermal conductivity.

The difference in behaviour between diagonal and non-diagonal coefficients
should be stressed. The perpendicular coefficients L, (x,) are monotonously
decreasing functions of |x,|. Starting from the finite value L, (0) =L, they
drop rather abruptly to a small value; for |x, | > 1, the variation becomes
much slower. The non-diagonal coefficients L , start from zero and quickly
grow to a finite value. In this range, the main effect of the magnetic field is to
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Fig. 5.2. The five ion viscosities. (21M; Z =1).

build up the anisotropy, which shows up, in particular, through a Hall effect.
For larger values of |x,|, the coefficients L , start decreasing towards zero,
but they do so more slowly than the corresponding L | .

It is worth noting that all the transport coefficients have the same qualita-
tive behaviour (see figs. 5.1, 5.2). This is an argument showing that the present
description is a “fundamental” one, in contrast to other descriptions (such as
from Braginskii 1965; see section 5.7) using different sets of fluxes and forces.

Finally, it is interesting to study the effect of the charge number Z on the
transverse coefficients, which is illustrated in fig. 5.3. It is seen that the
qualitative features described above remain the same, but are considerably
enhanced in magnitude as Z increases.

It is rather trivial to note that the ions are much less affected by the
magnetic field than the electrons: this is merely a result of their large mass.
From egs. (1.6) and (4.6.11) we find

&im=— I/ZZ_I(Ti/Ia)s/ZQe"'e- (5.37)
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Fig. 5.3. Effect of the charge number Z on the transverse electron thermal conductivities.

As the factors g, Z~', T,/T, are small (most often T,/T, <1), it follows
that, for a given magnetic field, x, < | x. |. As a result, if the graphs for the ion
transport coefficients L', , L', were drawn as functions of x., rather than x;,
one would see that the electron transport coefficients die out long before the
ion coefficients start decreasing.

We conclude this discussion with the following remark. We have seen that,
in the absence of a magnetic field, in a spatially homogeneous system, eq. (5.15)
reduces to the usual form of the Ohm law (5.8). If we perform the same limit
in the presence of a magnetic field, eq. (5.15) reduces to

j=0<(E+c 'unB). (5.38)
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In other words, the quantity defined by (3.10), which we called the
“modified magnetic field”, E, reduces, for a homogeneous system, to

E=E+c 'unB. (5.39)

The driving force for the electric current is this modified field E, rather
than E. This is easily understood. A fluid, moving with velocity u, does not
feel an electric field E as defined in the laboratory reference frame. In order to
find the real field acting on the moving plasma element, we must perform
Lorentz transformation of the electric field to a frame moving with velocity u.
The result in the non-relativistic limit is precisely (5.39). This remark is quit
important for understanding the equations of magnetohydrodynamics.

(b) Tensor fluxes. We now discuss egs. (5.18), which have a considerably
more complicated structure than the vector equations. This is because the
linear transformation from the second-rank tensor »,, to the second-rank
tensor 7% necessarily involves a fourth-rank tensor %3;,,,. However, the overall
symmetry of the problem again considerably reduces the number of coeffi-
cients appearing in this fourth-rank tensor. It was shown by Hooyman et al.
(1955) (see also de Groot and Mazur, 1984) that the mere requirement of
invariance under rotations around an axis parallel to B reduces the number of
independent viscosity coefficients to five, and requires the form (3.20) (or
3.22-3.23) of the transport equations *. Hence, just like the form (5.22) of the
transport matrix in the vector case, the form (3.20) obtained in kinetic theory
is required by the general symmetry of the system.

We now show how the fourth-rank transport tensor can be written in an
intrinsic form. We introduce again the right-handed triad (e,, e,, b). We then
note that when the pressure tensor is written as in (3.22), the component
tensors of eq. (3.23) can be identified as

v =3(e.e, + ese,)(ee; +ee,): v+ bb(bb): v,
vP =1(ee; —ese,)(ere; —ese,) i v+ (ere, + ese;)ese,: v,
v@=(e,b+be))eb:v+ (eyb+bey)esb: v,

y® = (—ee; +ese;)ee;: v+ (ee, + ee;)(ee, — ),
v® = —(e;b+be,)e,b: v+ (eyh+ be,)eb:v. (5.40)

We note that all non-diagonal terms, such as e;e, : v, can be symmetrized as
3(eje, + eye)) : v because v is a symmetric tensor. We now see that each term

* If there is a bulk viscosity as well, the number becomes seven; but for non-relativistic,
weakly coupled plasmas, the bulk viscosity is negligible.
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in the expression above simply involves a direct product of two basis matrices
S, or A, defined in (5.23), (5.24). We may therefore write the transport
equation in the form (5.18):

7= -7(B):», (5.41)
i*(B) =iV + 5@ (B) + 7@ (B) +§*D(B) + 7 (B). (542)

The explicit forms are easily obtained:

W =92 (8,8, + 18,S,), (5.43)
T@(B) = i7%(S;S; + SsS;), (5.44)
T (B) = n3(8S; + 8,8,), (5.45)
T (B) = 1n3(8;8; — S;8;). (5.46)
O (B) = 115(8:S, — $:8)). | (5.47)

This is the most general form of the viscosity tensor in a uniform magnetic
field *.

We note again that not all basis matrices contribute to 4*. Indeed, the most
general fourth-rank tensor would involve all the 9 X 9 = 81 possible pairs of
basis matrices; instead, the isotropy requirement reduces this number dramati-
cally to five combinations.

The symmetry properties of the viscosity tensor are not simple. There is,
however, one property which is relevant for transport theory; it is the parity
under permutation of the two basis matrices in each “super-dyadic”. We thus
define a symmetric and an antisymmetric part of the viscosity tensor as

7*(B) ="V (B) + 7™ (B), (5.48)

* Note that Braginskii (1965) also gives an intrinsic representation of the viscosity tensor,
which is different from the present one. It is easily checked that his representation is only valid
[i.e. reduces to (3.23)] when it applies to a traceless tensor ». Consider, for instance, his
representation of »™ (translated in our notation),

(D =3(bb—31)(bb—31):v.

This is a traceless tensor, whatever the nature of ». But, for an arbitrary », it is not equivalent to
the corresponding form (3.23), which is, in general, -not traceless. If, however, one takes into
account the vanishing of Tr », the result reduces indeed to (3.23). Similar remarks apply to the
other terms of his representation. In conclusion, Braginskii’s representation, without being
incorrect (because the tensor » is indeed traceless), is less general and less transparent than egs.
(5.43)~(5.47).
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with

.‘,"’u(S) = ﬁa(ll) + ﬁa(Z) + ﬁa(4)’

FHA) = e 4 ja®) (5.49)
The corresponding parity is defined as *

a(S) _ pa(S) a(A) _ _ pa(A) (5.50)

Nmnrs = Nrsmn> mnrs ~ Nrsmn-

Decomposition (5.48) is analogous to decomposition (5.30) of the second-

rank transport tensors. It is now easily seen from the results of table 3.2 that
) is independent of 2,

2, are even functions of 2, (5.51)

n3,+1 are odd functions of 2,.

It is then shown, by a straightforward generalization of the previous discus-
sion, that the Onsager symmetry principle takes the form, in the present case,

Wonnrs (B) = 07, (— B), (5.52)
which implies
() = m (—2,) = niSh (~ 2,),

nmnrs smn mnrs
Tars (2a) = Wi (— Qo) = =2 (— 2a), (5.53)

which correspond to relations (5.35).

There is a clear parallelism between the properties of the viscosity tensor
and of the second-rank transport tensors. The even coefficients 1%, 7 have
properties similar to L, , whereas the odd coefficients n{, 5 behave like L .
In the limit of a vanishing magnetic field we find

n5(0) =m5(0) =nf,  mi(0) =n3(0) = 0. (5.54)

It is then easily seen from (3.23) that the transport equation (5.41) reduces
simply to
mt= =i (045D + ) = i,

which is, indeed, identical to (5.4).

* It is now seen that we have chosen a notation in which the parity of the labels corresponds
to the parity of the tensors.
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The behaviour for finite fields is understood by the same physical argu-
ments as discussed for the vector fluxes. Figure 5.2 vividly illustrates the
analogy between 53, 73 and L, on one hand, 73, 5 and L , on the other
hand. The latter (odd) contributions to the momentum flux are non-dissipa-
tive. These non-dissipative contributions are sometimes called the gyroviscosity
coefficients. In a strong magnetic field, these coefficients become independent
of the relaxation time (see section 5.6). For all these reasons, they are
sometimes called the viscosities characterizing a collisionless plasma. This term
is, however, misleading, because for finite 2, they do depend on the relaxa-
tion time. An interesting discussion of the properties of a “gyroviscous
plasma” is given by Newcomb (1966).

5.6. Limiting values of the transport coefficients in a very strong
magnetic field

It is very interesting to consider separately the values of the transport
coefficients in the presence of a very strong magnetic field, i.e. in the limit

|xo] = 24| 7> 1. | (6.1)

These asymptotic coefficients describe the “tails” of the curves shown in
figs. 4.2, 5.1, 5.2. These simple limiting values have quite interesting intrinsic
properties. Moreover, they play a fundamental role in the theory of magneti-
cally confined plasmas.

From the values given in table 3.2, we obtain the following limiting values,
by retaining terms up to order |x,| %

e
& 1 ~oo 1
1L = 2 AT Q s
T,
(2.) e
e
(4
0 13 ~o0
axy = 3 ay=0,
(21.)
o
=000 €33 ~a00 __ 1
1 2 A )
(2..) fae
o
,;-’aoo 22 ~aoo _ 1
2 27 1 ’
(2,1.) Lat
o
) 1
=000 ~ 000
N4 (6.2)
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A first important fact will be proven now: the limiting values of the
transverse transport coefficients given in eq. (6.2) are exact universal values,
independent of the approximation scheme (i.e. of the number of moments
retained in their calculation).

This is already suggested by the ‘fact that eqgs. (6.2) are obtained either by
using the 13M or the 21M expressions of table 3.2. It also appears pictorially
in figs. 4.2a—f, where the convergence of the 13M and 21M approximations is
evident for large |x,|.

In order to sketch the general proof, we consider the simpler transverse
components of the ion vector moments, determined by the first two equations
in (3.14). We consider these equations for the moments AX*7*D, pi?»*D for

=1, 2, 3,..., n. The truncation level, n, is arbitrary. We also remember that
g,i(z”“) =0 for p=2.

We are not interested here in the exact solution of (3.14), but only in the
leading term, in the limit |x;| > 1. We now show that this leading term is
easily obtained. (In order to unburden the notation we use the following
symbols in the forthcoming calculation ¢ Copp X=x;)

The solution #®, for r=x, y, is the ratlo of two determmants

L A®
i _Zr
BO =~ (6.3)

Consider first the denominator; it has the form

€3 X C3s 0 Tt C32n+1 0
-X €33 0 C3s T 0 C32n+1
Cs3 0 Css X Tt Cs2n+1 0
A= 0 Cs3 -X Css s 0 Cs2nt1 |- (6.4)
C2n+1,3 0 Cn+15 0 T Cpt12n+1 X
0 C2n+1,3 0 C2n+1,5 T -X C2n+1.2n+1

It has a clear structure when decomposed into 2 X 2 blocks. The blocks
along the diagonal are “complete”; they consist of elements c,, along the
diagonal, and of elements X off the diagonal. All the other blocks are
“incomplete”. In order to extract the dominant term in X, one easily con-
vinces himself (e.g. by working out some special cases) that the following
practical rule is valid. Consider the columns in succession from the right to the
left. In the first column, keep only the dominant element, and annul all the
others. In the next one, keep again only the dominant element, provided it is
not on the same line as the previous one. Continue in this way up to the
leftmost column.



260 The classical transport theory [Ch. 5

Using this procedure, the dominant contribution to A is given by the
following determinant, which is easily evaluated,

0 X 0 0 0 0
-X 0 0 0 0 0
0 0 0 X 0 0
A=| 0 0 —‘X 0 0 0 .
0 0 0 0 0 X
0 0 0 0 -X 0
Hence
A=X"+0(Xx*"1). (6.5)

The determinant AYY in (6.3) is obtained from (6.4) by replacing the first
column by another column, whose first two elements are g\, g/®, and all the
others are zero. Thus, the expansion of the determinant A'® leads to

A® = 5751 4 5751, (6.6)

The determinants 8° and 8" are evaluated by the same asymptotic analysis as
above, with the result

8 =cyuX®?, 8 =-—Xx¥N (6.7)

Hence we find, by combining (6.3)—(6.7) (and reverting to the usual, complete
notations),

RO =

X

(@ )2 (c33g;(3) — 7, gl(s)) (6.8)
iTi

This is exactly the result (6.2).

~ The fundamental point is that the level of truncation, n, has dropped out of
this expression. It is seen that the origin of this result is the vanishing of all
source terms for p > 2. '

We have thus obtained expressions (6.2) for &', &' as general asympiotic
values, independent of the level of truncation of the moment equations. The same
analysis can be applied, with the same result (6.2) to all the other transverse
limiting transport coefficients.
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We now discuss in some detail the perpendicular (diagonal) transport coeffi-
cients, 6, &%, £7°, 75, 73*. They all have a very simple dimensionless
form

¢z

(21.)

7 aco _
L=

(6.9)

Let us comment on each factor. We have just shown that the values of the
coefficients ¢{ are universal; they are simply matrix elements of the collision
term c,,.

The next important feature is the dependence on |2, | % the classical
theory predicts an asymptotic decrease of the perpendicular transport coeffi-
cients, proportional to the inverse square of the magnetic field. Such a strong
variation is very favourable for a confinement device, because it keeps the
leakage of particles and of energy at a very low level. It was actually one of the
main motivations for the start of the big thermonuclear fusion programme
around 1950. Unfortunately, these predictions were not borne out by the
experiments and the realization of the magnetic fusion turned out to be more
difficult than was originally expected. The reason is that many other effects
are superposed on the simple, collisional transport mechanism of the classical
theory. The resulting effective transport coefficients vary more nearly like B~
and are therefore less favourable to the confinement. For these reasons, our
work does not end at the present chapter: we will have many more things to
say about the transport phenomena in plasmas.

The third factor entering (6.9) is the inverse square of the relaxation time.
This factor determines the dependence on the temperature and the density. In
order to validly discuss this point, it is preferable to go over to the dimensional
transport coefficients, because the scaling factors between L and L are also
functions of temperature and of density.

In the literature on plasma physics, the perpendicular transport coefficients
are usually expressed in terms of the thermal Larmor radius of the species a,
P, defined in (1.5.10), combined with (2.6.13)

Vi mye\: T,
0= QTZ =(e B) 2=, (6.10)

ma

The values of the dimensional perpendicular transport coefficients are
collected in table 6.1 and compared to the parallel ones. The comparison
immediately reveals a fundamental difference. All the parallel transport coeffi-
cients are proportional (o the relaxation time, whereas the perpendicular ones
are inversely proportional to the relaxation time 7,. Another, very usual way of
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Table 6.1
Comparison of the parallel and perpendicular transport coefficients, in the limit of a very strong
magnetic field.
Status Parallel transport Perpendicular transport
2 2 2
. .. en . e nep
Electrical conductivity 0= m: T 6} o= 2T c§, °TCL°
2
. . . en " e n.p
Thermoelectric coefficient o =3 m—° T & a3 = \/—%_ 57 B °1_ Le
€ € €
. 5 n,T, . n 0>
Thermal conductivities K= —= 1, & K =3 g —otLa
2 m, T,
n .02
Viscosities = n.T, 7, @} 15® = 4q5° =1m, o 2L

'3

putting this is to use the collision frequency v, =1, '. We then see that the
parallel transport coefficients are inversely proportional to the collision frequency,
whereas the asymptotic perpendicular transport coefficients are proportional to
the collision frequency. This property vividly illustrates our previous discussion:
collisions oppose the parallel transport, but favour the perpendicular one. It
may be said that in a plasma, in the presence of a constant strong magnetic
field, when the collision frequency is increased, the transport of matter, energy
and momentum is progressively transferred from the parallel to the perpendic-
ular direction.

We now discuss the dependence of these transport coefficients on temper-
ature and on density. We make the formulae of table 6.1 more explicit by
inserting the expressions of the relaxation times (table 5.3). One then finds
[with the abbreviation 4 =3/(4/27 In A))

0% = A" 'm2Z%**B 2ni T, 3% 8,

a® = A"'mY?Z%3 2B 2T, 25 o,

K = A"'mY?Z%*c* B n? T, V% 3¢5,

K, = A7'mi2Z2% 2B i T V% 3¢,

5 = A MY ZB A TV ¢,

n5° = A" 'm}*Z%**B iV cy. (6.11)

The coefficients L% are thus proportional to the square of the density, and
are decreasing functions of temperature, in striking contrast to L.
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Another important difference appears when the perpendicular ion and
electron thermal conductivities are compared:

L (6.12)

eoo

T\~ C%s
L

— g, —1/272( i
p Z(T

e C§3 )
Comparing this relation to the corresponding one (5.14) for the parallel
thermal conductivities, we see that the factors p, Z~! (T,/T,) appear here
with negative powers. Hence, the conclusions of (5.14) are completely reversed.
In the direction perpendicular to the magnetic field, the energy is mainly
transported by the ions. Note again, however, that this conclusion may be
reversed if the ion temperature is much higher than the electron temperature.
A similar comparison of the viscosity coefficients yields

n_ -3 —1(5)_1/22
= p 4z T = (6.13)
Here the conclusion of (5.14) is strongly reinforced by the presence of the very
large factor p~>/2. Thus, in the perpendicular direction, the momentum is
predominantly transported by the ions.

We now consider the non-diagonal coefficients L ,, which have an altogether
different behaviour. We first note that the coefficient & is much smaller than
all the others in a strong magnetic field: it scales like (£2.7,)>. Hence, to the
dominant asymptotic order, it can be taken equal to zero. The remaining
dimensionless coefficients are all of the form

. 1
Li=-g—. (6.14)

a’'a

This form is again a universal limiting value, valid independently of the level
of the truncation. A fundamental fact is the absence of any trace of the collision
operator (i.e. of the matrix elements ¢, ) in these relations.

Next, we note that these coefficients are larger than the corresponding
perpendicular ones by a factor £, they are inversely proportional to B.

The dimensional forms of these coefficients are quite revealing:

C
=] o0
oX=n, — a?=0
A7 7¢ eB’ AT
C i C
eco 5 T 100 5 T.
A 2Mtele eB’ A s ZeB’
m.c : m.c
(-4 € 100 1
M e’e ¢B’ ! i"i ZeB (6.15)
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These expressions show that the non-diagonal dimensional transport coeffi-
cients are independent of the collision frequency. The corresponding fluxes, in
the limit of a very strong magnetic field, become purely non-dissipative. This
point will be further highlighted in the next chapter.

A very shocking feature, at first sight, is the appearance of a negative sign
for the ion thermal conductivity. It shows again that these fluxes do not conform
to the “usual” standards of dissipative transport phenomena. As will be
shown, however, in chapter 6, these negative transport coefficients do not
imply any contradiction with thermodynamics. It will appear that the non-di-
agonal components of the fluxes do not produce any entropy. This fact
reinforces their interpretation as non-dissipative fluxes.

5.7. Comparison with other treatments

The amount of literature published on the classical transport theory is enor-
mous. It would therefore be a very tedious and unnecessary task to perform
detailed comparisons with every existing paper. OQur purpose in the present
section is much more limited: we shall briefly review the various methods used
in this field and then focus on a comparison with the works which are
commonly used by present-day plasma physicists as “reference works”.

Although the problem of classical transport is, in principle, a simple and
well-defined subject, many different methods were used in its study, and the
results were presented in many different forms. The first aspect is beneficial,
as it shows the convergence of the results obtained from different kinetic
equations and by different methods of solution of these equations. The second
aspect is much less commendable, in as far as each author uses his own
definition of the fluxes and of the thermodynamic forces. As a result, it is
difficult to compare in detail the various forms of transport equations appear-
ing in the literature. For instance, it is not sufficient to say that the electron
thermal conductivity is the proportionality coefficient between the electron
heat flux and the electron temperature gradient: its value depends on the
definition of all the other fluxes and forces! This point — which will be
illustrated below — is well-known in non-equilibrium thermodynamics (de
Groot and Mazur 1984). It implies, in practice, that before using a numerical
value of a particular transport coefficient, the complete context should be
checked in order to make sure that it fits the particular situation at hand.

We have collected a certain number of papers on classical transport and
give an overview in table 7.1. The rows of this table correspond to the kinetic
equation used as a starting point; the columns correspond to the method of
solution.
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Table 7.1
Selected papers on classical transport theory *.

Kinetic Method of solution

equation Chapman-Enskog Moments

Boltzmann Landshoff (1949, 1951) Herdan and Liley (1960)
Chapman and Cowling (1952)
Kaneko (1960)

Ferziger and Kaper (1972)
Kaneko and Taguchi (1978)
Kaneko and Yamao (1980)

Landau Braginskii (1958, 1965) Samokhine (1962, 1963)
Kaufman (1960, 1966) Kirii and Silin (1969)
Robinson and Bernstein (1962) Silin (1971)
Shkarofsky et al. (1963) Broughan (1982)
Chmielesky and Ferziger (1967)
Hinton (1983)

BL Gorbunov and Silin (1964)
Rand and Levinsky (1966)
Braun (1967)

Composite Kihara and Aono (1971)
Cohen and Suttorp (1982)

* The numerical solutions are discussed in the main text.

Four kinetic equations have been used in plasma transport theory. The
venerable Boltzmann equation, which is the basis of neutral gas kinetic theory,
was the first equation used for the calculation of plasma transport coefficients
(Chapman and Cowling 1952). Its use with a Coulomb potential leads to
well-known divergence difficulties at long distances. On the other hand, the
Boltzmann equation is still the basic tool in the theory of weakly ionized gases
(which are not discussed in the present book), where the prevalent interactions
are non-Coulombic. The Landau equation used in this book is the simplest
collision model which adequately takes account of the long range of the
Coulomb forces (in spite of its divergence difficulties). The Balescu—Lenard
equation (BL), briefly mentioned in section 2.4, gives a more correct descrip-
tion of the long-range plasma interactions. Unfortunately, its use in practical
calculations is rather difficult. Finally, some composite kinetic equations have
been proposed independently by Hubbard (1961), Kihara and Aono (1971),
Kleinsmith (1976, 1977) and by Mondt (1979). They combine the features of
the three previous ones by using some kind of interpolation which ensures the
convergence at both short and long distances.
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It turns out, fortunately, that the iransport coefficients are rather insensitive
to the use of one or another of these kinetic equations. This fact is particularly
well documented in a recent work by Cohen and Suttorp (1982).

The transport coefficients were obtained from an approximate solution of
these equations by using (or adapting) either the Chapman—Enskog method or
the moment method. To these one could add three works which use a purely
numerical solution of the kinetic equations: these are discussed separately
below.

The Chapman—Enskog method (Chapman and Cowling 1952, Cercignani
1969, Ferziger and Kaper 1972) was historically the first method which proved
fully successful for treating the Boltzmann equation (Chapman 1916, 1917,
Enskog 1917, 1921). It is a sophisticated asymptotic perturbation method
which, unfortunately, leads in practice to a heavy formalism, burdened by
quite complicated notations, as can be seen in the references quoted above.

The moment method originally put forward by Grad (1949), was only
applied till now to very specific problems, or was limited to low approxima-
tions. It is one of the purposes of this book to show that the moment method
can be developed into a conceptually simple and systematic formalism,
allowing one to calculate very precise values of the transport coefficients. A
second advantage lies in its unveiling many important structural properties
which cannot be easily grasped in the Chapman-Enskog method. Last, but
not least, it is very directly applicable to the study of magnetically confined
plasmas, as will be seen in the second part of this book: the Chapman-Enskog
method cannot be generalized as such for covering these problems.

We now start the more detailed discussion of those papers which are most
widely used in the plasma physics literature.

A. Spitzer’s theory

This work is contained in two papers: one by Cohen et al. (1950) and one
by Spitzer and Hérm (1953). It starts from a form of the kinetic equation
which is “more or less” equivalent to Landau’s viz. The Fokker-Planck
equation, derived by Chandrasekhar (1943), linearized around a Maxwellian
distribution. The purpose of the first paper was the calculation of the electrical
conductivity for a uniform plasma, whereas the second paper combined the
electrical conductivity and the thermal conductivity. In both papers, the
magnetic field is absent. A stationary solution is sought (in the first case) to
the kinetic equation obtained from (3.3.1) with $*=0, 9,f“=0 and X™*
replaced by its linearized version

ea a a a a,,aQ
—m—aE'ggfo = K*(f5'x)- (7.1)
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Contrary to most existing works, the kinetic equation was not treated by
any expansion method, but was solved directly on a computer. Its solution x§
is still called the Spitzer function: it is only known numerically. A similar
method was used in the second paper.

This was a very courageous approach in the very early times of computer
science. The Spitzer transport coefficients were, for a long time, considered as
“exact” reference values. For instance, the earlier versions of the neoclassical
theory incorporated the Spitzer function as an essential ingredient, in spite of
its being only known numerically (Hinton and Hazeltine 1976).

The absence of an analytical form obscures the structure of the transport
theory. We now know, on the other hand, that a very simple analytic
approximation, the 21M approximation, yields a remarkable accuracy. As
discussed in section 5.4, Kaneko and co-workers (Kaneko 1960, Kaneko and
Taguchi 1978, Kaneko and Yamao 1980) verified, by using up to 50
Laguerre-Sonine polynomials, that the increase in accuracy beyond the 21M
approximation is minimal, and that the approximate values tend smoothly
toward Spitzer’s.

This point is also interesting from another point of view. It confirms the
insensitiveness of the transport coefficients to the precise kinetic equations
used for their calculation. Indeed, Kaneko uses the Boltzmann equation rather
than Spitzer’s Fokker—Planck equation.

If we now look into the Spitzer—Harm results in more detail, we find a
strange feature. The transport equations are presented in the form

J=0E+avT, qg°=—BE—-KVT,. (7.2)

Comparing these with our equations (5.1), (5.2), we see that the force
“conjugate” to j is here the “bare” electric field, instead of the modified field
E, eq. (3.10). This description is thermodynamically incorrect. However,
equations of the form (7.2) can be recovered in two particular cases.

(1) If it is assumed that the electron pressure is uniform, E reduces to E (in
the absence of a magnetic field) and the coefficients o, a, 8, K of (7.2) reduce
to our coefficients oy, —ea, —ayTe, K.

(2) If it is assumed that the electron density is uniform, our equations (5.1),
(5.2) can be rewritten as

j=oE+ (el =)V, ¢ =qLE- (kj- e Ty )VT.. (7.3)

Unfortunately, Spitzer and co-workers are very careless in defining their
reference state (they only say that f° is a Maxwellian, without giving any
formula), so we cannot know a priori which choice is made. We have, however,
an indirect piece of evidence. It manifestly appears in (7.3) that, whenever the
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transport equations are written in terms of fluxes and forces which are not
thermodynamically conjugate, the Onsager symmetry does not hold for its coeffi-
cient matrix. 1t is clear, on the other hand, that the Spitzer & Harm coeffi-
cients a and B in (7.2) are unequal; hence, their results probably correspond to
assumption (2). In this case, however, the coefficient K cannot be identified with
the “true” thermal conductivity k. This point is a first illustration of the
warning given at the beginning of this section. It is indispensable to state very
precisely all the physical conditions of the problem in order to determine
unambiguously the meaning of each transport coefficient.

B. Braginskii’s theory

We now discuss the most widely accepted formulation of the classical
transport theory, due to S.I. Braginskii. The original paper was published in
1957 and appeared in an English translation in 1958 (Braginskii 1957). This
paper begins with a footnote: “Work performed in 1952”. In 1963, Braginskii
wrote a detailed review paper in the Russian series Voprossy Teorii Plazmy,
Vol. I: this volume was translated into English in 1965 under the title Reviews
of Plasma Physics (Braginskii 1965). It is the review paper of this volume
which became the “bible” of classical plasma transport theory, both in the
Soviet Union and in the Western countries.

This work has the following characteristics:

— It treats a two-temperature ion—electron plasma in a constant magnetic
field.

— It starts from the Landau equation, simplified by the Lorentz process.

— It uses the Chapman-Enskog (slightly adapted) method with two
Laguerre—Sonine polynomials (= 21M) (the parallel coefficients are also given
in the 29M approximation).

— It is the first work where all the transport coefficients are evaluated and
discussed.

— It discusses the connection with non-equilibrium thermodynamics.

We wish to express here our admiration for this careful and valuable work,
which deserves its reputation. The methods and results given in the present
book incorporate all the ingredients put forward by Braginskii 35 years ago.
We shall, however, formulate some remarks about his results.

First, we note that the presentation of his results is very different from ours
for the electron vector fluxes. Instead of writing transport equations connecting
the fluxes ( j, ¢°) to the forces (£, VT,), he chooses as fluxes (R%, ¢°) and as
forces ( j, v T,). This choice seems rather unnatural, because the friction force
R is not a readily measurable quantity, and j is, intuitively, a flux rather
than a force. Our own choice is “natural” in the sense that it comes out
directly from the hydrodynamical balance equations (4.5.12), (4.5.22)—(4.5.24)
without any additional manipulations. (Hydrodynamics does not provide us
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with a balance equation for the friction!) Moreover, as will be seen in Part II
(chs. 13, 15-18) in this book, the formulation chosen here is quite well adapted
to the neoclassical generalization; this is not the case for Braginskii’s formu-
lation.

In order to compare Braginskii’s results to ours, we need to perform a linear
transformation. In dimensionless form, Braginskii’s transport equations are
written as relations connecting the dimensionless friction 7,Q‘" and the heat
flux £*® to the dimensionless current A% and temperature gradient g*>:

.00 =—5-hV+b.g°®  pO=p hD 4§ g°O, (7.4)

where p, b, b’, k' are tensors represented by 3 X 3 matrices. Our equations
(5.15)-(5.16) are written as

KO =5-gD+a-g®,  BO =g 4 g g0, (75)

In order to relate these equations to (7.4), we need to adjoin the expression
of the friction force, taken from (4.6.34),

.00 = —c§ 1AW — ¢ h D — 5 hS O — - (7.6)

The problem consists of eliminating g from these equations. This elimina-
tion process will be different in the various approximations (13M, 21M, - --). In
particular, we see that beyond the 13M approximation, we need additional
equations, relating the non-privileged moments to the sources g®, g%, for
instance,

O =fog® 45060 (7.7)

These relations introduce “pseudo-transport coefficients” f, ¥, which are
easily obtained by solving egs. (3.1) in the relevant approximation.
We then obtain (in the 21M approximation) from the first eq. (7.5)

gD =G Lep®W_g-l.g.g°® (7.8)

and then, by substitution, two equations of the form (7.4), with

p=chl+cha-6"+ 567", (71.9)
b=ciy(a-¢'-@—&)+cis(B-67 1 a-7), (7.10)
b'=a-é, (7.11)

—d-¢ '-a. (7.12)
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We note that all the matrices 5, b, b’, #'° have the characteristic form
(5.22) required by the isotropy in the plane perpendicular to b. We now
discuss these relations in some detail (in the reverse order, for convenience).
(a) Braginskii’s thermal conductivity. The form of eq. (7.12) is independent

~7€

of the truncation level. The three independent coefficients of the tensor K™ are

oy ~ a” =/ i 1 X X 5 X &6
"ue="ﬁ_oTu’ Kf'_'“i_f:[(“zl_“a)% +2d,8,6,],
7= ki—Di[MﬁAth T ALND (7.13)
1
where
D, =§% +42%. (7.14)

These coefficients have a simple interpretation: they determine the electron
heat flux due to a temperature gradient when the electric current vanishes,

q°=—«k"°-vT, [j=0]. (7.15)

The tensor «’® differs from «°, which determines the heat flux when the
effective field vanishes (e.g. when there is no electric field, no mass motion and
no electron pressure gradient). The reason for this difference can be seen in eq.
(7.8). When the current A" vanishes, there appears an effective field g®
proportional to the temperature gradient: its effect must be added to the
“normal” thermal conductivity in eq. (7.5).

Braginskii’s parallel “zero-current thermal conductivity” is always /ess than
the ordinary thermal conductivity,

~re ~
£ <K,

as can be seen from the first eq. (7.13). Its positive sign results from the
thermodynamic inequality

RF6, — df >0,

~lC ~

which will be derived in chapter 6. The sign of the differences &' —#&° ,
R’3— R°, is not imposed by thermodynamics. It turns out, from the numerical
evaluations, that &’ — &% <0; &7 —« is negative for small |x,|=|2,|".,
but changes sign for larger values. We may also note that, for large |x.|,
~l€ ~e

&, = Kk°,. The transverse zero-current thermal conductivities are plotted in fig.
7.1
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Fig. 7.1. Braginskii’s zero-current electron thermal conductivities £, compared to the zero-field
electron thermal conductivities 5.
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Finally, we note that the coefficients &°, &', &', calculated by using (7.13)
with our 21M transport coefficients agree with those calculated by Braginskii’s
formulae within two decimal figures over the whole range of |x.]|.

(b) Braginskii’s thermoelectric coefficients. Here, a quite interesting point
appears. The coefficient b’ is expressed in eq. (7.11) in a form independent of
the approximation, whereas b is expressed in (7.10) in a form depending on
the truncation level. Nevertheless, it can be shown by direct evaluation, using
the expression of table 3.2,

b=b'=a-6"" (7.16)
This equality is an expression of the Onsager principle, whose validity is thus

proved in Braginskii’s formalism. It justifies the use of (7,Q®, A®) and (h°®,
2°?) as pairs of thermodynamically conjugate fluxes and forces.
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(c) Braginskii’s resistivity tensor. The tensor p is defined by eq. (7.9) in an
approximation-dependent form. We note that (7.10) together with (7.16)
provides us with

@G e BedT = (G671 + R+ cofsF) ra (7.17)

If we note, moreover,

we find that (7.9) can be transformed into

p=6—l+ﬁ,’ (718)
where the tensor 5’ is defined (in 21M) by
P = (5@ + cfsR + cfs¥) +a . (7.19)

When this tensor is worked out and the expression of the transport coefficients
are taken from table 3.2 (an easy operation in 13M, but tedious for the
transverse ones in 21M), the following surprising result is found: the tensor p’
has vanishing diagonal elements (=, =0), but non-zero non-diagonal ele-
ments (§ , # 0). This, in turn, implies the following statement: The diagonal
elements of Braginskii’s tensor p coincide with the diagonal elements of the
inverse conductivity tensor 6”1, this is not the case for the off-diagonal
elements,

5|I=(6_1)II’ po=(""., Pat(671)4. (7.20)

Thus, Braginskii’s interpretation of the tensor p as the resistivity tensor is —
strangely enough - only “ partially” valid. *.

In a very recent paper, Epperlein and Haines (1986) recalculated all the
vector transport coefficients by solving numerically the kinetic equation for f;
(f=f, + f; * v). They claim that the coefficients § , and b . (in our notations)
not only differ widely from Braginskii’s values, but have a different asymptotic
behaviour for | x.| — oc. They support this point by an asymptotic analytical
calculation which yields the behaviour ,~ |x.| %>, b, ~|x.| > The

* One may note that Braginskii is — misleadingly — cautious. He gives general formulae (4.30),
(4.34) for his coefficients &, « , @, (proportional to our 3, 5, , § , ), but without giving them a
name! In his §2 (“Summary of results™), eq. (2.6), he gives limiting expressions of p for very large
| x|; in this limit, 5 , << §), 5, and the Hall coefficient is neglected. The resulting approximately
diagonal tensor can then be identified with the approximately diagonal resistivity tensor!
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validity of their complicated asymptotic expansion appears doubtful. More-
over, they do not show why all the other asymptotic transport coefficients
have a “regular” behaviour. Their numerical results, which are hardly control-
lable and are based on empirical polynomial fits, contradict all the existing
works, in particular the recent Kaneko 60-polynomial calculations. We are not
ready to accept them without a further independent confirmation.

We have shown in section 5.6 that all the transport coefficients (in our
formulation) have simple and universal limiting values, given by eq. (6.2)
independently of the truncation level. There is, however, a small problem,
precisely with Braginskii’s coefficients 5 , and b, . As shown above, 5 , does
not have a universal expression, therefore its asymptotic value is not easily
determined. As for b , it is given by

~ ~ = -2_-2 e |
B o= ~.~_1) _alol+a,\0,\~x X “+x °x
J._(a o )=

62 +62 x?

The asymptotic behaviour of b, is defined by both terms in the numerator;
&, behaves like x™°, but with a non-universal coefficient (see section 5.6).
Hence, b . behaves like x~2, but its coefficient is not a simple, universal matrix
element c;;. On the contrary, it is easily checked that b , does have a universal
behaviour, %= cf;x 1.

In conclusion, this discussion confirms the greater physical transparency of
our formulation of the transport equations as compared to Braginskii’s.

We now consider relations (7.20) in more detail. First, we note that, because
of the peculiar form of the matrix 6, eq. (5.22) we have

b=

| —

(7.21)

<

The identification of the parallel resistivity as the inverse parallel conductiv-
ity is thus straightforward. But for the perpendicular resistivity one must be
much more careful: §, is the perpendicular element of the inverse conductiv-
ity matrix

b, = Tl—gz— (7.22)
I A

+

Here we note that Braginskii makes a serious mistake when he writes his
formula (2.6) in a form implying

[,g - %] [Braginskii] (7.22)
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This expression is approximately valid only for |x.| <1, when 6, <4,
and certainly not in the opposite limit, for which Braginskii’s result is quoted.

Actually, the behaviour of the perpendicular resistivity in the limit | x.| > 1
is very interesting. As we know from (6.2), both §,, and &, tend to zero for
large |x.| (hence, Braginskii’s expression (7.22") tends to infinity!). But
6, ~x.% and 6 , ~ x_ !; hence, in this limit,

p°f=07*—=c;1=1. (7.23)

Thus, the perpendicular resistivity tends to a finite value as |x.| = oo,
although the perpendicular conductivity tends to zero. This apparently paradoxi-
cal result dramatically stresses the difference between (6,) ! and (671), . It
also shows the essential role played by the Hall conductivity ¢, in the
definition of the perpendicular resistivity. It is needless to add that the
asymptotic result (7.23) is an exact result (see section 5.6).

If we now use the value of G, (for Z = 1) given in table 4.1, we obtain

Y =1.9535,. | (7.24)

This widely quoted (and sometimes misused!) relation, obtained by
Braginskii, is quite correct; but the form given by this author fhis eq. (2.8), as
well as eq. (2.7)] is incorrect:

§,=1.966°.  [Braginskii]

We have plotted in fig. 7.2a the perpendicular resistivity, which demon-
strates the smooth increase from 5, (0) to #¥. In fig. 7.2b we plotted
Braginskii’s coefficient 5 ,, compared to the Hall resistivity. (67') .. The
difference is striking: the former tends to zero, whereas the latter tends
linearly to infinity as | x.| = 0.

(d) Braginskii’s other transport coefficients. All the other transport equa-
tions, i.e. the ion heat flux and the ion and electron pressure tensors, are given
by Braginskii in the same form as ours. His ion thermal conductivity and all
his viscosities should therefore be directly comparable to ours. We have indeed
checked the numerical values of all these coefficients with our 21M results and
found an excellent agreement throughout the whole range of x,. * This

* The reader should be warned about a peculiarity in Braginskii’s definition of the relaxation
times 7, and 7; [eqgs. (2.5¢) and (2.51)]. His definition of .7, is the same as our eq. (4.6.4), but in his
definition of 7;, the factor (27)'/2 [our eq. (4.6.10)] is replaced by (#)'/? and this is not a
misprint! If our coefficients are compared to his, and this difference is overlooked, systematic
differences by factors (2)'/> appear in all the ionic transport coefficients. We cannot understand
his motivation for introducing such an artificial dissymmetry between ions and electrons!
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Fig. 7.2. (a) Braginskii’s perpendicular electrical resistivity; (b) Braginskii’s non-diagonal electri-
cal resistivity, compared to the Hall resistivity.

agreement is the final test of the equivalence between the Chapman-Enskog-
Braginskii method and our moment method. This agreement is so much more
striking that the analytic forms are sometimes very different in the two cases
(for instance, our expression for £ is a ratio of polynomial of degree 4 to a
polynomial of degree 6, whereas Braginskii’s expression for £’ is the ratio of a
polynomial of degree 2 to a polynomial of degree 4). In spite of this, the
difference between our 21M values and Braginskii’s never exceeds 1%.
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6

Entropy and transport

6.1. Entropy balance and H-theorem

In chapter 3 (section 3.5) we discussed the properties of the entropy of a
plasma by adopting a purely macroscopic point of view. Such an approach is
limited by the assumptions necessary for grabbing a starting point. Here, we
take up the problem again from a fundamental point of view and show how
the macroscopic assumptions can be justified and how their limits of validity
can be determined.

Even in this approach, our ambitions must be limited within certain
bounds. To be specific, we assume the validity of a kinetic equation for the
one-particle distribution functions f%(v; x, ¢), and more particularly, the
applicability of the Landau kinetic equation. The more general question of the
existence and definition of the entropy for more general systems and more
extended regimes will not be discussed here.

It is well known (Balescu 1975) that the entropy is definitely distinct from
all the other hydrodynamical quantities defined in chapter 3. In particular, the
entropy cannot be defined as an average of a microscopic dynamical function, like
the energy, the pressure, etc. Its microscopic definition is somehow related to
the integral over the whole phase space of the function F In F, where F is the
N-particle distribution function. Thus, the entropy is a collective quantity,
whose value is determined by the instantaneous state of the whole system.

In order to make this concept operational in a kinetic theory, and therefore
in hydrodynamics, a definition is needed in terms of reduced distribution
functions. This is a very complicated problem at the fully general level,
because it involves a nonlinear functional of the correlation functions of
arbitrary numbers of particles. (In contrast, the most general definition of the
internal energy of a plasma, including the Coulomb interactions, involves only
the one-particle and the two-particle distribution functions.)

However, for the weakly coupled plasmas studied in our book, a consider-
able simplification can be achieved. Indeed, it was shown in chapter 3 that
these plasmas behave thermodynamically like ideal gases. Therefore, when we
look for definitions of thermodynamical quantities, the effect of the correlation
functions can be neglected. This statement is consistent with our definitions

277
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(3-2.7) of the internal energy density, (3.2.18) of the pressure tensor and
(3.2.21) of the heat flux. In all these quantities, the potential energy contribu-
tions, which are determined by the two-particle correlations, are neglected.
One is then tempted to adopt for the entropy per particle the well-known,
quite general definition of Boltzmann (1872), which, for a single component
gas, is

1 m?
s= —TV_qu dvf(q, v, t)[In f(q, v, t) — 1] +ln7

[Balescu (1975), eq. (7.3.12)]. (Here & is the Planck constant; we recall that the
Boltzmann constant ky is set equal to 1). This definition is, however, incon-
venient for the study of spatially inhomogeneous systems, because it involves
an integration over q. The resulting entropy s is therefore solely a function of
time. In transport theory, we need an entropy density defined locally at each
point x in space and at each time ¢t. We therefore adopt a slightly different
definition for the entropy density (per unit volume) of species a, involving the
local distribution functions (3.1.10),

no(x, t)s,(x, t)
= -—fdvf"‘(v; x, t)[ln (v, x, t)=1] +n,(x,1) ln’:—z". (1.1)

The final justification for this definition will appear at the end of this
section. A similar definition was adopted by de Groot and Mazur (1984), by
Silin (1971), and by Misguich and Balescu (1984). Equivalently, eq. (1.1) can
be written in the more compact form

n (x, t)s,(x, t)= —fdvf"‘(v; x, t) ln( h33 f(v; x, t)), (1.2)

em

where ¢ is the basis of natural logarithms, In e = 1.
The total entropy density of the plasma may be defined by

n(x, t)s(x, t)=Yn(x,t) s, (x, t).

It is, however, much more natural to study separately the two entropy
densities per species, in the spirit of the two-fluid picture. This is especially
advisable in a plasma whose electrons and ions do not have the same
temperature.
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We now derive the equation of evolution for the entropy density, by
applying the usual method of chapter 3. Starting from (1.2), we find, using

(3.3.1)-(3.3.3),
LS . R
3, (nys,) = —fdv[ln( " ) +1J 9,f =fdv[ln( emf,f ) + 1]
+ ZJ("”J
B

e
X[—v'vf"—m—“(E+%v/\B)'a

a

=T, +T,+T,. (1.3)

The first term between brackets yields, after some elementary manipula-
tions similar to those of section 3.4,

Vfdo(

where u* is, as usual, the average velocity of species a.
The second term is easily shown to vanish identically. For the third term,
we introduce the notation

)(v )= (uns), (1.4)

0%=Y 0%, (1.5)
B
with
o°B(x, t) = —fdv[ln f(v; x, 1)] X5, (1.6)

[We note that the constant terms [In(4’/em>) + 1] give a vanishing contribu-
tion to the collisional term, because of the number conservation property
(2.7.4).] We also define

J(x, t) = — fdvln( f(v; x, t))[v—u (x, )] f*(v; x, 2).

(1.7)
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The equation of evolution (1.3) can therefore be written in the form of an
entropy balance equation,

0, (ngsy) = —V *(ngs.u®+J2) + 0" (1.8)

We clearly recognize the convective entropy flux n,s,u® the (conductive)
entropy flux J& and the entropy source a°.

Let us emphasize once more that we obtained two separate balance equa-
tions for the electron and the ion entropy densities. This two-fluid picture is
different from the *traditional” description (de Groot and Mazur 1984), in
which a single entropy density characterizes a mixture of gases,

dps=—v(psu+J,)+0o, [deGroot and Mazur]

where u is the centre-of-mass velocity. This type of description is unsuitable
when the plasma is described by two temperatures and two heat fluxes.

We now come to the most important point. In order to evaluate the
collisional entropy source, we use the Landau collision term in its symmetric
form (2.7.7) and perform an integration by parts, '

AaB h6 a B
7 [don de In| ——— (0 x, 1) (0 %, 1)
a’*B

aB — _

g

X (m7 0y, —mg' 0,,)G,(g)(ma' 0y~ mz 8y,)

Xf(vy; x, 1) fP(vy; x, t)

’}Aaﬁfdvl dv’z[fa(vl; X, t)fB(UZ’ x, t)] _1I/VrGrsu/;’ (19)
where we introduced the abbreviation

W,=(m;' 0, —mj' 8, ) f*(vy; x, 1) f*(0y; x, 1). (1.10)

If A is any vector, making an angle § with the relative velocity vector g, the
following property is easily derived from definition (3.3.9) of the Landau
tensor:

g°4,G, A, =4,(8%,,—8,8,)A,=A%g* — (A-g)" = A%” sin’0 > 0.
(1.11)
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As the distribution functions f¢ are clearly non-negative quantities, we
conclude from (1.9) and (1.11)

o*?>0. (1.12)

The inequality is valid for each pair of indices, e-e, e—i, i-e, i-i. Equation
(1.12) may be called the H-theorem for a plasma. It follows from eq. (1.8) that,
in each point x and at all times, the entropy of each species can never decrease
as a result of the collisions. For this reason, the entropy source ¢*# will be
more adequately called the entropy production.

The H-theorem is the final justification of the choice (1.1) or (1.2) for the
local entropy density. It constitutes a proof of the second law of thermody-
namics in the case of a weakly coupled plasma.

It must be stressed, however, that the result (1.12) is stronger than the mere
statement of the second law. Indeed, the latter only requires the fotal entropy
production to be non-negative,

o=Y Yo >0, (1.13)
a B

whereas the kinetic theory tells us that each term in this sum is separately
non-negative. In other words, every collision process is a very effective “en-
tropy producer”. It is impossible to realize a situation where, for instance,
0% >0, 6% <0, but 6% + 0% > 0. Such a situation would be acceptable by the
second law, but is excluded by Kkinetic theory.

We finally note that (1.12) identifies the collisions as the only source of
irreversibility or dissipation. This statement is valid whenever the plasma is
“quiescent”. According to our definition (section 3.1), the statistical state of a
quiescent plasma is completely described by the one-particle distribution
functions f® If the plasma becomes unstable and turbulent, this description
becomes incomplete and one must take into account correlations and collec-
tive phenomena. One then finds additional sources of dissipation, leading to
the so-called anomalous transport. This important problem will however not be
addressed in the present volume.

6.2. Entropy and Hermitian moments. The kinetic form of the
entropy production

All the results of section 6.1 are completely general, i.e. are independent of any
assumption about the state of the plasma.
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We now wish to specialize these results to the plasma regime considered in
classical transport theory. The state is then close to a local plasma equilibrium
and the distribution functions have the form (4.3.8), completed by expansions
(4.3.19)-(4.3.22). In this case, the various quantities related to the entropy can
be calculated explicitly.

Consider first the entropy density. Substituting (4.3.8) into (1.2) and using
the dimensionless variable ¢, eq. (4.3.4), we find

><1n[ v 7e) eon +x°‘(c)]]. 1)

em;
The entropy per particle can therefore be written in the form
Sa=s04 sl ... . (2.2)

where s!") is a functional of order n in the deviation x® The zeroth order
term is (recalling eq. 4.3.6)

3
h°n,

0 2
m +1+%fdc¢(c)c s

- _ln(

3
h n,

(27””“)3/2 Ta3/2

sl = —m( + % (2.3)

This is precisely the local equilibrium entropy per particle, as given in eq.
(3.5.8). As for the first-order term, we find [using In(1 + x) = x]

h3n
m_ _ 0 a ] 1.2 _
e fdc X (111 Q2mm,T,)"? * ) = 24

the vanishing being due to constraints (4.3.9). We have thus justified the
quasi-thermodynamical definition of the entropy density used in section 3.5, with
the additional result that the deviation from s is at least quadratic in x*.
This important point was established (for neutral gases) by Prigogine (1949)
(see also de Groot and Mazur 1984, ch. IX, §6).
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Next, we consider the various terms in the entropy balance equation (1.8),
starting with the (conductive) entropy flux. A short calculation shows that,
through linear order in x*,

h3
fdc¢(1+x)c ln( T3/2¢(1+x)

T \12 .
a 0. a
n"(_ma) fdc¢xcc

=Vin ( ) [de $'xHP(e).

Il
(ST

[In this calculation, constraints (4.3.9) are repeatedly used]. Thus, the entropy
flux is proportional to the Hermitian moment h*®, i.. to the heat flux. Using
the definition of table 3.2.1 (“Fluxes”) we get

T, \'? 1
T e R (2.5)

We thus recover, to leading order, the non-equilibrium thermodynamics result
(3.5.15).

We now go over to the most important part of our investigation, i.e. the
evaluation of the entropy production. The explicit calculation is straightfor-
ward, but rather tedious. We therefore only outline the steps, and give the final
result. ‘
~ For the electron—electron and the ion—ion entropy production (6%, ¢') we
evaluate eq. (1.9), combined with (4.3.8).

— The electron-ion entropy production is evaluated by using the “Lorentz
approximation” (2.8.1), (2.8.11) of the collision operator. A calculation similar
to the one leading to (1.9) yields

1

d_l4 m>*fdo ———— VLV 2.6
o 2 elmelf vfe(v; x, t) rors¥ss ( )
where
V= af(v; x, t)’
du,

2

g = ( () +ul E)a G”(O)+7a"’”8v38 G.(v)|. (2.7)
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(It may be checked that the positive sign of the entropy production is not
spoiled by the Lorentz approximation.) Equation (2.6) is also combined with
(4.3.8).

— The ion-electron entropy production gives contributions of relative order
p=m./m; and is therefore neglected.

— It is found that the leading order to the entropy production is quadratic in
the deviations x¢, hence quadratic in the Hermitian moments 4"} We only
retain these quadratic terms, neglecting higher-order non-linearities.

— A rather long calculation, of the same type as those explained in section 4.6,
leads to a remarkably simple result,

oc°=0%+ 0"

N N

—_ e e ep+1)e(2q+1)
= E E Czp+1,zq+1hr h?
p=04=0

=

[

N N
+ T T aghifhe0 s | (23)
p=1g=1 '

N N
n;

"__ E E l(2p+1)h1(2q+1)
= Czp+1 2q+1
T
p=14g=1

Q
III

N N
* T T chpahSORE (29)

where N denotes the level of truncation (e.g. N =2 for 21M). We recall the
convention introduced in table 4.6.2 and used in all the compact formulae of
the present chapter,

1) 5,
he® =M,
The coefficients c¢,,, c,,, are precisely the Hermitian matrix elements of the
collision term, i.e. the same numbers as those entering the transport coeffi-

cients, listed in tables 4.6.3 and 5.3.1. Both egs. (2.8) and (2.9) can also be
grouped in the single compact form

n
= Y Qp+1paq+i
"a—‘,‘r— 262p+12q+1ha PrDpparh

1P g

+ Y Y5, 1 hEPRECD ¢ | (2.10)
P q
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We now comment on this result.

To leading order, the entropy production appears as a quadratic form in the
Hermitian moments of all orders and of all tensorial characters. It therefore
involves an infinite number of variables. In practice, each of this expression is
truncated at an arbitrarily given level N.

Vectors and traceless tensors do not couple to each other: we thus find
separate, independent contributions for each type of tensor moments.

The ellipsis (---) in eqgs. (2.8)—(2.10) stands for the contribution of the
scalar Hermitian moments, as well as for all the anisotropies of third and
higher order. In the next section, a considerable simplification of this result
will be achieved.

The most important fact to be stressed is that the expression of the entropy
production as a quadratic form in the Hermitian moments is an intrinsic one: its
coefficients c3,,, are solely determined by the properties of the collision term, which
is, indeed, the real source of the irreversibility. Moreover, the rate of entropy
production is determined by the collisional relaxation times 7,. In particular,
the external electric or magnetic fields do not enter this expression at all.

The only assumption underlying (2.10) is the validity of eq. (4.3.8), ex-
pressing that the plasma is close to the local equilibrium state. Equation (2.10)
will be called the kinetic form of the entropy production.

Consider now the sign of the entropy production. The (strong) second law
of thermodynamics requires that both ¢¢ and o' be positive definite quadratic
forms. Moreover, because of the mutual independence of vectors and tensors,
we conclude that each one of the four partial quadratic forms of eq. (2.8), (2.9)
is separately positive definite. This implies the existence of a set of relations
between the coefficients c;,,. These can be found in any textbook on algebra
(e.g. Smirnov 1970, Kurosh 1971, Korn and Korn 1968). It is easily checked,
by using the values of table 4.6.3, that all these conditions are indeed verified
at each truncation level (13M, 21M,...). We shall only quote here a few
consequences of the positivity criteria.

- The diagonal coefficients cj,,, are positive for every « and every m,

cs >0, (2.11)
— The following second-order determinants are positive,
in = ComCoin = Coin > 0. (2.12)
— The full nth order determinant (for any truncation level) is positive,
llemnll > 0. (2.13)

[In egs. (2.12), (2.13), m and n must be both odd or both even.]



286 Entropy and transport [Ch.6

6.3. The thermodynamic form of the entropy production

The entropy production will be transformed into various alternative forms,
which will bring out additional aspects of this important quantity.

We first recall the expressions (4.6.34) of the generalized frictions. 1t is then
obvious that the entropy production can be expressed in the simple form

0® = =, TICI IO Y 4 T psarQuan ). (3.1)
P P

Thus, the entropy production can be written as a bilinear form in the
Hermitian moments and the corresponding generalized frictions.

This form suggests a pictorial analogy (which should not be taken too
seriously!). The rate at which work is done by a force F on a particle moving
with velocity v is F v, i.e. the product of the force by the “flux” v. In (3.1),
the entropy production is similarly expressed in terms of products of friction
“forces” and “fluxes”. This analogy suggests the relation between entropy
production and energy dissipation.

We now transform the entropy production by introducing explicitly the
thermodynamic forces, i.e. in dimensionless form, the source term g%(™ In
order to do so, we use the linearized moment equations (5.1.7)—(5.1.10) (with
9,h*(™ = 0),

2p+1 -1,a2p+1 2p+1
QP =1 lgfCr D ke, 0,157,

b

nos

2p) _ —1,a(2 2 2
Q5 = 1R 4 (eSS + €y EE7) 2

p=0,1,2,.... (3.2)

In order to calculate the entropy production by (3.1), we contract all the
terms in the first equation with h*?7*1D and those of the second equation with
h®2P) and sum all the equations over p. We then note

ha(2p+1)ha(2p+1)b = 0

rmn r
2 2 2 =
(€rmnhS3P) + €1 HEEP ) 22D, = 0.

Thus, the magnetic terms drop out from the entropy production and we are
left with

n,
= 1'— Z (ha(2p+ 1) a(2p+ n 4 ha(2p)ga(2p)) (3.3)
P

a
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This is not the end of the story! We recall that the source terms g™ are
identically zero for all the non-privileged Hermitian moments. Hence, the infinite
sums over p in (3.3) are cut down to a finite number of terms, corresponding
only to the privileged Hermitian moments

o = Te (h(l) 1) + he(3) e(3) + he(Z)g;:x(Z)),
. n;
ol = T (h1(3) i(3) + h1(2) 1(2)) (34)

1

These relations do not involve any approximation: they are, in particular,
independent of the level of truncation. It must be stressed that this enormous
simplification is possible because of our use of irreducible Hermitian moments
for the description of the non-equilibrium plasma state. Only in this formula-
tion can one make a distinction between privileged moments and non-privi-
leged moments, whose source terms are identically zero.

It is now easily checked that egs. (3.4), (3.5) are precisely equivalent to
expressions (3.5.17) obtained from macroscopic thermodynamics. Indeed, from
(3.2), (4.4.4) and (4.5.7) we find

1.
h(l) D= _p pOOW® = i - RS (3.5)
€

€

Also, from definitions (5.1.13)—(5.1.16) and table 3.2.1 (“ Fluxes”) we find

nd o o 1 o
SEh g0 = — g+ VT,
B paiga® — — — L, (3.6)

Equation (3.4) may therefore be called the thermodynamic form of the
entropy production.

It may be stressed that the derivation of eq. (3.4) (from kinetic theory) is
completely independent of the thermodynamic derivation of section 3.5. In
particular, no use was made of the hydrodynamic balance equations (i.e. d,n ,
9,T,).

We note the following important corollary of the previous derivation. Let
h°?) be any non-privileged Hermitian moment. Our argument implies

Yeg, b he@ =0. (3.7)
q



288 Entropy and transport [Ch.6

As a result, the kinetic form of the entropy production reduces considerably
to

N N
ne 1 3 2g+1 2),e(29)
0¢= = T (65 201h® + 5,200 hSP )BTV + T o5 REDRIED |,
e | g=0 q=0
N
. ni . Mi(2g+1 . iz
o' = ¥ (2 hPRETD + ¢, HPRED). (38)

ig=0

Thus, although there is still an infinite number of moments contributing to
(3.8), these are only the vectorial and second-rank tensorial moments. A/l the
other anisotropies drop out from this expression, and the ellipsis in (2.8)-(2.10)
can be suppressed.

We now return to the thermodynamic form (3.4) of the entropy production.
It is a bilinear form in the thermodynamic fluxes h™?’ and their conjugate
thermodynamic forces g*#). We now see that only the privileged Hermitian
moments can properly be called thermodynamic fluxes: they are the only ones
contributing to the thermodynamic form of the entropy production.

Another remarkable fact about eq. (3.4) is that the coefficients in the bilinear
form are independent of any characteristic microscopic parameter. Indeed, the
combination

7, g%P

is independent of 7, (see egs. 3.5 and 3.6). As a result, the form (3.4) is
independent of any specific collision model [unlike the kinetic form (3.8)]. This
constitutes its generality. On the other hand, it can only be evaluated con-
sistently when the relation between the fluxes and the forces is known. Thus,
the evaluation of the entropy production requires a transport theory.

6.4. The transport form of the entropy production

The combination of entropy production and transport theory is obtained by
introducing explicitly the transport equations which relate the thermodynamic
fluxes to the thermodynamic forces and were derived in chapter 5. We remain,
of course, in the linear domain of transport theory, the only regime discussed
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in this volume. The dimensionless transport equations can be written in the
general form

1 7 2g+1 =
hi(2p+ ) — Z L:’("2p+1,2<1+1)g'en( q+ ), p=0,1,
g=0,1

mO =050 Om,
2 r a(22 2
he® = L200 goi, (4.1)

where L*?? denotes the various dimensionless transport coefficients. When
these equations are combined with the thermodynamic form of the entropy
production (3.4), the latter quantity becomes a quadratic form in the thermody-
namic forces g*'P), which is written explicitly as

e ne

. ~ 1) (1 ~ 1 3 3,0
ot = —[5,80g" + &,(g"g; + g:Vg")
€

(2),€(2)
vs Bmn |

~ 3 3 ~
+ 75,8508 + 55,8

S

L i i
o' = = (%,8:78,7 + Fsmn 8 8mr ) - (4.2)

1

3 |

This will be called the transport form of the entropy production. 1t is the most
explicit form, because it determines the entropy production in terms of the
external constraints driving the plasma, i.e. the electric and magnetic fields
and the gradients of temperature, pressure and velocity. In contrast to the
“kinetic form”, the transport form of the entropy production involves no
explicit truncation level: only the privileged moments appear in (4.2). How-
ever, it must be kept in mind that the truncation level is implicitly contained i
the values of the transport coefficients which, in practice, are evaluated in a
given approximation.

When there is no magnetic field (B =0), we know that the transport
coefficients are scalars. The entropy production then reduces to

n
~ 1 ~ 1 = = .
6t = _T.e(o" gD gD +2a, gV gD+ i g°0-g°0) + 58 g°@ ge(z)),
€

"

o' = 2R £V + 7, ' g'®),  [B=0]. (43)



290 Entropy and transport [Ch.6

It is also interesting to write the right-hand sides in terms of the dimen-
sional forces and transport coefficients, using egs. (5.1.12)-(5.1.16),
(5.3.11)-(5.3.13) and (5.3.21),

To*=o, E-E~2a; E-VT,+«f — N T
e

. 1 .
To'=xj VT +nyv:v, [B=0] (4.4)

where the effective electric field E was defined in (5.3.10) and the symme-
trized velocity gradient » was defined in (5.3.19).

Thus, each transport coefficient contributes a term to the entropy produc-
tion. The thermoelectric coefficient e, introduces a cross-term into o°, all
other (diagonal) coefficients are associated with square terms. All these
transport coefficients are thus connected to dissipative (zrreverszble) processes
in the plasma.

Consider now the general case of transport in the presence of a magnetic
field. The transport coefficients are now tensors. In the transport form of the
entropy production, each of these tensors is contracted with two (vector or
tensor) forces. The peculiar forms (5.5.30), (5.5.48) of the transport tensors
must now be taken into account; these result from the isotropy in the plane
perpendicular to the magnetic field. Each of the tensors can be decomposed
into a symmetric and an antisymmetric part. It is clear that none of the
antisymmetric parts of the transport tensors can contribute to the entropy produc-
tion, which is a quadratic form.

Indeed, if A is any antisymmetric second rank tensor and g is any vector,

gA-g=0.
Similarly, if B, €, » are arbitrary second rank tensors,
»:(BC—-CB):»=0

It then follows fron~1 (5.5.31), (5.5.46), (5.5.47) that all the non-diagonal
transport coefficients L ,, as well as the odd viscosities %3, 73, drop out from the
entropy production. The corresponding fluxes are purely reversible, non-dissipa-

tive fluxes.
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We introduce the notations
g =b'g, g,.=8-g=bnr(gnb),
v, =(8:S,+18.8,): 7,
v,=3(8,S; + S;S;) : v,
v,=1(8,8,+88,):». (4.5)

The entropy production is then written in the form

T

€ ~e _e(3),e(3)

e ge— 5. aWe® 4 25 o(Dye®
0T =68 8 24,8 8 + &g g
(54
~ 1 1 ~ 1 3 = 3 3
+6, g0 gV +2a, g0 g1P+7 g% g1?
R AR TR IR0 PRl RS O

i(3)

i3, i6) , =i iG) i, . =i =i
13gi@) 4 g gil -g'f)+nhv”.v”+1;'2v2.v2+1;‘4v4.v4. (4.6)

T . .

1 1 ~1 1
— 0 =K
n; 181 8l

We now derive the conditions for the transport coefficients resulting from
the definite positive character of the quadratic forms ¢, ¢'. The present
“transport form” is much simpler than the kinetic form (2.10). The ion
entropy production is reduced by the symmetry requirement to a simple sum
of squares. Therefore, the positivity conditions (Smirnov 1970) are simply

£, >0, £, =0,
~1

#>0, #>0, >0 (4.7)

The electronic entropy production is somewhat richer, because of the
presence of the thermoelectric cross-coefficients. We therefore find the “diago-
nal” conditions

6> 0, 6, >0,
/>0, & >0,
=0, 7320, #5>0, (4.8)

but also the additional conditions

) . ~2
6,k —@a; >0, G,k —a. >0. (4.9)
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It can be checked directly that all these conditions are satisfied by the
transport coefficients of table 5.3.2 as a result of the corresponding conditions
derived from the kinetic form of the entropy production. For instance,

1 - -
De’ 13M approximation,
. ome o~ 13
&\R) — & = e (4.10)
25 , 21M approximation.
Fiss

The right-hand sides are positive, because of criteria (2.11)—(2.13).

Note that the second law introduces no sign requirement on the individual
thermoelectric coefficients &, & , , @ . Equation (4.9) can be satisfied indiffer-
ently by a positive or a negative d: only its absolute value is constrained by
the inequality. Actually, it was found (figs. 5.4.1, 5.4.2) that all these coeffi-
cients are negative for small values of |x,|, and that &, and &, change sign
for large | x, |. This behaviour is perfectly in agreement with thermodynamics.

Needless to say (but worth stressing!) that thermodynamics requires nothing
of the non-diagonal coefficients L ,, %%, 75. In particular, these may be positive
or negative, without contradicting the second law. Actually, it was found (fig.
5.4.2F) that

and this may seem particularly shocking. It is, however, easily understood on
intuitive grounds that this relation does not conflict with the second law.
Consider first the parallel component of the ion heat flux,

gliI = —x(b- vT)b.

When the temperature gradient has a component along the magnetic field, the
heat can only flow from hotter to colder regions, which implies k> 0. The
same argument explains why «', > 0. But the A-component of the heat flux is

gi/\= _Ki/\(b/\ VTn)

This vector is perpendicular to the temperature gradient; it represents a heat
flux along a direction of constant temperature. Such a purely reversible flow can
go on in either direction, without contradicting the second law.
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7

Magnetohydrodynamics

7.1. The classical hydrodynamical equations. Dissipative magneto-
hydrodynamics

Our work of chapters 46 leads to a complete set of hydrodynamical equations
for a plasma in the presence of a homogeneous (or weakly inhomogeneous)
magnetic field. These classical hydrodynamical equations are valid whenever the
collisions dominate the dynamics of the plasma and when the gradients are
not too strong. These conditions were discussed in section 5.1. An additional
limitation must be added: the trajectories of the majority of the particles do
not differ widely from their orbits in a straight, homogeneous magnetic field.
The importance of this point will become clear and explicit in the forthcoming
chapters.

The most general description in the present, classical framework is provided
by the following equations. They were derived under the assumption that the
charge density is everywhere negligible: ¢ = 0. We rewrite here these hydrody-
namical equations for convenience, using dimensional quantities.

— The continuity equation (4.5.1):

dp=—v +(pu). (1.1)

— The momentum balance equation (4.5.2):
1 .
0,pu = ~V-(puu+Pl)+?j/\B+V'(1r"’+1r‘). (1.2)

— The electron temperature equation (4.5.3):

2
oT.= —a-vT,— 3T,V -a— 3 7 Vu

1, . 2
Vgt R = Zp(T,-T), (13)

3ne eng

295
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where we used the notation
a=u—(en,) 'j. (1.4)

— The ion temperature equation (4.5.4):

3 ;= —uVT,—3T, V u—

I.V v ty = T.—T.).
3ni ’ “ 3ni 9 'TeP'Z( € l)

(1.5)
— The equation of state (3.4.22):

P=nT.+nT=2(ZT,+T). (1.6)

1

Equations (1.3)-(1.6) may also be combined into a single equation for the
total pressure, which can be used instead of one (or both!) of the temperature
equations, as will be seen below.

2 . '
j*v(nT,)

5
P=—-uVP—3PV - u+_—j vl ,—

3e 3en,
—3(r ) Vu— 3V (g5 g) + o RO (1.7)
3 3 Zep

These hydrodynamical equations are closed by using three additional sets
of relations. The first group includes the electrodynamical moment equations:
— The charge balance equation (4.1.10):

v +j=0. (1.8)
— The linearized generalized Ohm law [(5.1.7) with 8, = 0]:

ezne(E+c_1u/\B)+V(ne7;)—%jAB—eRei=O. (1.9a)

We wrote the Ohm law in this form, in order to perform the forthcoming
customary transformations. A completely equivalent, but fully explicit form is
obtained by solving for the current, thus using (5.5.15),

j=0‘E—a-vT, (1.9b)

where we recall that the effective electric field is defined as

R 1
E=E+%u/\B+ —_v(n.T). (1.10)
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The second group of closing equations defines the remaining dissipative
quantities. It includes the transport equations (5.3.9), (5.3.16), (5.3.22),

¢°=Ta-E -« vT, (1.11)
q'=—«k'-VT, (1.12)
7%= -7 ». (1.13)

We also need an expression for the friction force R® (4.6.34),

Rei— g+ (1.14)

r\ el V5T

€ €
meCy, 2 ¢
€

The third group of closing equations includes the pre-Maxwell equations

3,B= —c(V AE), (1.15)
T

j 4«”(V A B), (1.16)
V:'B=0, (1.17)
V +E=470. (1.18)

This set of equations is closed and may be taken as a basis for the complete
macroscopic description of the plasma. 1t will be called here the set of dissipative
magnetohydrodynamical (MHD) equations. It is, however, still too complicated
for many practical applications. For this reason, it is customary to introduce
additional simplifying assumptions in order to construct tractable models for
describing the macroscopic plasma behaviour. It is the purpose of this chapter
to review the most widely used of these models.

A first important remark concerns the general structure of the hydrody-
namical equations of this set, i.e. egs. (1.1)—(1.7). On the right-hand sides two
groups of terms are clearly distinguished, corresponding to non-dissipative
motions and to dissipative processes. We rewrite the equations in the follow-
ing, half-schematic way, in order to exhibit this separation: the second class of
terms is denoted by {DISS}:

9p=—v *(pu),
dpu= —v *(puu+ Pl)+ ¢ ’j A B+ {DISS},
3T, ~~—uvT,—3%T, v u+ {DISS},

P=—u-vP—3P v-u+ {DISS}. (1.19)



298 Magnetohydrodynamics [Ch.7
The main difference between the two classes of terms is their order of
magnitude with respect to the parameter A introduced in (5.1.3),

{Non-dissipative terms: Order Ay, (1.20)

Dissipative terms : Order A%;.

In the collision-dominated classical regime, one is tempted to consider that
the second group of terms is small compared to the first, and may therefore be
neglected. However, this procedure is sometimes dangerous, because the
mathematical nature of the dissipative terms is quite different from the first.
As a result, even a very small amount of dissipation may lead to phenomena
dramatically different from the predictions of the non-dissipative theory. For
instance, it is clear that if the dissipation is to be regarded as a small
correction, it must be treated by the methods of “singular perturbation
theory”, because the corresponding terms are of higher differential order than
the non-dissipative terms. As a result, this will lead to the formation of
sheaths, where the gradients may become very steep. It is therefore indispensa-
ble to put a big warning sign in front of the forthcoming discussion:

A given set of approximations is never universally valid, even for a given range
of physical parameters. Their relevance must be checked in detail for every
particular problem.

As a first, rather trivial example, we consider the following assumption,
which is very common in the literature (see e.g. Goedbloed 1983):

|t — '] < |ul,
or
il <enlul. (1.21)

The assumption appears reasonable, in general, because u is a hydrody-
namical quantity (thus of order A%;), whereas j is non-hydrodynamical, hence
of order Ay. If this approximation is accepted, then the quantity & in the
electron temperature equation (1.3), (1.4) is simply replaced by u, and the term
J* VT, may be dropped in eq. (1.7). On the same basis, the term j A B could
be dropped in the Ohm law (1.9a)! The consequences of these features will be
described in the next section.

Here we only mention what happens when the hydrodynamical equations
are applied to the study of a (static) equilibrium configuration. In this case,
one considers (by definition!) situations in which # =0, but j= 0. Hence
approximation (1.21) becomes completely wrong!
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7.2. Resistive magnetohydrodynamics

The first simplification of the dissipative MHD equations, which is very
frequently introduced in the plasma physics literature, will be presently
discussed (see, e.g. Braginskii 1965, Golant et al. 1980, Freidberg 1982,
Goedbloed 1983). It consists of reducing the dissipative processes to their
simplest expression. The approximation consists of neglecting the heat fluxes
q* as well as the momentum fluxes, i.e. the dissipative pressure tensors w* in all
the equations. The only dissipation mechanism left in this picture is the
electrical resistivity. Therefore, the resulting model is called resistive magneto-
hydrodynamics (MHD).

The procedure can be reformulated as follows in the general framework of
chapter 4. Referring to eq. (4.3.8), the deviations x* from the local plasma
equilibrium are simply put equal to zero. Equivalently, (see 4.3.11), all the
Hermitian moments h*P) are declared negligible. This could be called the
5-moment (5M) approximation and is, indeed, the crudest approximation which
still retains some form of dissipation. The origin of the latter is the difference
between the local velocities of the species, u®—u'# 0, which implies the
existence of an electric current.

We now discuss this assumption. Its first consequence is the replacement of
egs. (1.11)-(1.13) by

g°=q'=0, w°=7'=0. (2.1)
This, in turn, implies
a=0, k“=0, 7*=0. (2.2)

Let us consider in some detail one of these relations, say k®=0; the
discussion of the others is quite similar. The vanishing of the tensor k* implies
three relations:

k*=0, k=0, «k%=0. (2.3)

We know from section 5.6 that, if the magnetic field is sufficiently strong, the
two conditions k% =0, k% = 0 can be easily satisfied; however, the smallness
of k% poses an altogether different problem. Indeed, looking at table 5.3.3, we
see that there are two ways of satisfying this condition. One is to assume that
the density n, and/or the temperature T,, or simply the pressure P,, are very
small. This is indeed the case in many problems of astrophysical interest (e.g.
the solar wind, the planetary magnetospheres,...), but not in the fusion
context. Another possibility is to assume that the collisional relaxation time is
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very short, 7, =0 (or that the collision frequency », = 7,1 is very high). This
implies a plasma regime which is very strongly dominated by collisions. This
condition is, again, not very likely to be satisfied in a fusion context.

The next simplification appears.in the expression of the friction force
(1.14). Upon setting all the Hermitian moments equal to zero, this force
become simply proportional to the electric current (remember that ¢§; = 1, see
table 5.3.1):

Ri= e (2.4)

Upon substituting this expression into the Ohm law (1.9a), we get

L:—ej+%j/\B=e2ne(E+c_1u/\B)+ev(n67;). (2.5)
€

Its solution, obtained according to the procedure of section 5.3 is
j=o'[E+c_1u/\B+(ene)_lv(neﬂ)]. | (2.6)

The conductivity tensor ¢ has the usual form (5.5.22) and its individual
components are given by (5.3.11),

8271

o, =—1.6, A=1I, L, A, (2.7)
with
1 X

1+x2’

O A

(2.8)

where x, = ...

Equation (2.6) is usually employed in MHD for expressing the electric field
in terms of the current [which is determined by the Maxwell equation (1.16)].
Equation (2.6) is therefore inverted, with the result

1 1
E+_unB+ v(n T.)=0""+j, (2.9)

en,

where 07! is the resistivity tensor. [This (inverse) transport tensor is commonly
denoted by 7 in the literature, but this notation leads here to confusion with
the viscosity tensor].
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In the MHD literature, even these equations are considered too complex;
two additional simplifications are introduced. First, it is assumed that the ion
Larmor radius ry; is much smaller than the hydrodynamic length,

T

This is a very reasonable assumption, which is easily satisfied both in fusion
regimes and in astrophysics: it is nothing other than the expression of the drift
approximation (see 1.5.26). Under this assumption, the pressure gradient term
can be compared to the u A B term on the left-hand side of (2.9) (Freidberg
1982),

(ene) ' 19(nT)| _ (memiLy) 'ZepT, _ 1 mc T, 1
C_llu/\Bl (memic)"lzeZPuB LH eB m; u
_niTe Ve,
T Ly \T, u’

where ¢, = (T,/m;)'/* is the well-known ion-acoustic velocity. If, as usual,
u=c,, and if T, is not very different from T;, the ratio of the two terms is of
order (ry;/Ly). Thus, the electron pressure gradient term can be neglected in eq.
(2.8).

Next, it is usually assumed that condition (1.21) can be used in the Ohm
law (2.5) in order to suppress the term j A B. The equation then reduces to

e’n,

Jj= 're(E+%u/\B),

€

or
. 1
1=o,|(E+ ?u/\B). (2.11)

Its inversion is trivial,

1
E+%uAB=—j.

gy

(2.12)

Equations (2.11), (2.12) are found in all classical texts on MHD (Alfvén 1950,
Cowling 1975, Freidberg 1982, Kulsrud 1983, etc.). This approximation scheme
calls for two remarks.
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(a) The clearest misdeed of the brutal application of approximation (1.21) is
the loss of the anisotropy of the conductivity tensor. This has serious conse-
quences: by using (2.11) instead of (2.6) for plasmas in the presence of strong
magnetic fields (remember 2.10), the perpendicular components of the electric
current (for a given electric field) are grossly overestimated. Indeed, we know
from sections 5.4 and 5.6 that ¢, and o, decay rapidly to zero for strong
magnetic fields.

If, on the other hand, the Ohm law is used in the form (2.9), the use of
(2.12) for determining the electric field also leads to inconsistencies. The
parallel component is given correctly; as for the perpendicular components, we
find from (2.9), combined with (5.5.28),

e E'=(oa7")e;rj+ (07 )rezv), (2.13)

where E'=E +c 'u A B, and e,, e, are basis vectors perpendicular to B. We
know from the discussion in section 5.7(c) that, in the limit of a strong
magnetic field,

(a7~ e

2
en.,

Hence, the first, diagonal term in (2.13) would be precisely consistent with o,
(2.8). * However, the second, non-diagonal term becomes very large, growing
linearly with £2.7.!

We thus see that the use of the “innocent” approximation (1.21) completely
changes the character of the solution. Thus, eq. (2.11) has, at best, the status of
a model equation, possessing the advantage of mathematical simplicity. It has
not been derived as a well-controlled approximation to the exact equations.
The validity of its consequences should therefore be checked in each particular
case.

(b) Suppose we accept the isotropic model for the conductivity: we then
derive eq. (2.11) with value (2.8) for the parallel conductivity, i.e. 6, =1. But
we know from table 5.4.1 that this value is too small by a factor =2 as
compared to the exact value &, = 1.953. One could, of course, simply “patch
up” the model by inserting the exact value of g, into (2.11). This, however, is
an inconsistent procedure, because the 13M value (and, a fortiori, the higher
approximations) of the conductivity results from a coupling between the
electric current and the heat flux leading to the transport equations (1.9b),
(1.11). But in the present approximation the heat flux was put equal to zero!

* Actually, even this “consistency” is fortuitous. We know from (5.7.24) that the exact
perpendicular resistivity is about twice the parallel one! The reason of the equality here is the
incorrect value of o,, see (b) below.
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We now turn to the pressure equation (1.7). With the approximations (2.1),
(2.4), the last three terms of the right-hand side reduce to j*R% ~ o ! j2.
Consider now the term j+ v 7T,: this term is assumed to be small compared to
the non-dissipative term u-vT,, on the basis of (1.21). However, in the
general case, its value is comparable to a dissipative term contained in
jR%: joq®~ —j-k®+vT, Thus, if the complete dissipative contribution is
retained, the term j +» VT, cannot be neglected; if, however, the 5SM approxima-
tion is accepted, its neglect is Jusuﬁed A similar argument applies to the term
J*v(n.T,) in (1.7).

The neglect of the terms j+ V7T, and j-v(n.T,) introduces a new feature
into the model: none of the temperatures T, or T, appears any longer separately
in the equations of the model: they only contribute to the evolution in the
combination (1.6). We thus no longer need rwo equations (1.3), (1.5) for a
closed description: the unique pressure balance equation is sufficient for the
closure (in spite of the existence of two different temperatures, 7, # T;). This
equation reduces to

o,P+u-vP=—-3Pv: u+ij (2.14)

The last term is this equation clearly describes the dissipation of energy
through the Joule effect.

The simplified equations which come out of the previous discussion are
now combined into an equivalent set, from which some of the quantities are
explicitly eliminated. The strategy goes as follows.

— The electric current j is obtained from (1.16) [which automatically satisfies
(1.8)].

— The electric field E is determined from (2.12).

— As a result, the momentum balance equation (1.2), combined with (1.1),
yields the equation of motion,

1
p(0,+uv)u=—-vP+ ?j/\B= -VP - 41—773/\ (v AB),
which, in turn, is combined with (1.16).
— Finally, the magnetic field obeys eq. (1.15), which is combined with (2.12)
and (1.17),

2
3B=—-cv AE=V A (uAB)+—v2B.
470,

The outcome of this discussion is a set of four closed equations for the three
hydrodynamical quantities p, u, P and for the magnetic field B. These equations
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Table 2.1.

The equations of resistive MHD.

[Ch.7

dp

ar_ TPvcH

du 1
pE——VP—EB/\(V A B)

dP s 2 2
—=-3PT-u+ AB
dr TH 16-7r2t1,,|v !

2
9,B vA(uAB)+4man

Constraint
v-B=0

Definitions

1 ¢
P — AB —— (Vv AB
c(" ) 4-7ro,,( )

<
ji=7.(VAB)

1
=" G V(U B)
Note
d
E =a,+ll'v

(R.1)

(R2)

(R.3)

(R4)

(R5)

(R.6)

(R.7)

(R8)

(R.9)

are augmented by a constraint for the magnetic field and by three “auxiliary”
relations defining the electric field E, the electric current j and the electric
charge density o. These equations are brought together in table 2.1, where they

are renumbered for easy reference.

The outstanding feature here is that the parallel electrical conductivity (or
its inverse, the resistivity) is the only remaining transport coefficient describing
the dissipation in this model. This justifies its name: the resistive magnetohy-
drodynamics (or simply resistive MHD). It is a widely used model in the

plasma physics literature.
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7.3. Ideal magnetohydrodynamics

Even the equations of table 2.1 are often considered too complicated for a
detailed study. An additional simplification is postulated in order to suppress
completely the remaining dissipative terms. Formally, this postulate is for-
mulated by saying that the plasma has an almost infinite parallel conductivity
(0, = o) (or an almost vanishing parallel resistivity ). The term involving ¢, in
egs. (R.3), (R.4) and (R.6) of table 2.1 can then be neglected and the equations
of table 3.1 are obtained (see below). They are properly called the equations of
ideal magnetohydrodynamics (or ideal MHD). They constitute the most popu-
lar model for the study of the macroscopic plasma dynamics, both in astro-
physics and in fusion theory.

The assumption justifying their use must, however, be discussed more
carefully. The mere statement that “o, is large” has no intrinsic meaning,
because o, is not a dimensionless quantity.

An even less favourable point appears when we recall that the other
transport coefficients x5, a,, 7% , were discarded on the basis of the assump-
tion that the plasma dynamics is strongly dominated by collisions, i.e. 7, = 0.
If this argument is consistently pursued, it leads to the conclusion that o,
(which is proportional to 7., see table 5.3.3) would be very small, rather than
very large, as assumed above!

The correct argument for the justification of ideal MHD comes from a
comparison of the two terms on the right-hand side of each of the equations
(R.3), (R.4) and (R.6) of table 2.1. Consider, for instance, eq. (R.4). We obtain
the following estimate in terms of the hydrodynamic length scale Ly, intro-
duced in section 7.2,

v A(uAB)| _ uBL3! an
l(cz/4’”0n)szl (02/47TU.|)BL§2 o2 ot

The right-hand side is a dimensionless number which will be called the
magnetic Reynolds number R,

4q
Rm=?0”uLH. (31)

This name is not arbitrary. The ordinary, hydrodynamic Reynolds number

Re=LurL, (3.2)

is a measure of the relative importance of the inertial, convective terms,
compared to the dissipative viscous terms in the Navier—Stokes equation (1.2).
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Similarly, R, measures the relative size of the convective terms, relative to the
dissipative terms in the Maxwell equation (R.4). The role of the kinematic
viscosity (m,/p) is played by the resistivity, or rather the combination
(c?/4mo ) in the magnetic Reynolds number.

Our conclusion concerning eq. (R.4) is

|v A(uAB)]| ~R 13
‘(c2/4770”)V2B‘ ™ (33)

A similar estimate in (R.6) shows that

lc" (unB)| -
|(C/4770||)(V /\B)l "

(3.4)

Finally, in eq. (R.3), we find [by estimating the pressure term from (R.2)
with u = 0]

|3P YV cu|
|(c*/167%,) |v A B|?|

~3R,. (3.5)

We thus conclude that the condition of validity of ideal MHD, formulated
intrinsically in dimensionless form is

R, >1. (3.6)

From (3.1) we see that the magnetic Reynolds number can be made large,
even for a small parallel conductivity, by considering situations where the
velocity and /or the length scale is vary large. In practice, (3.6) is best satisfied
for real plasmas when Ly is very large. Priest (1982) very adequately says
“lideal MHDY is sometimes referred to as the infinite-conductivity limit, but it
would be better called the large length-scale limit...”. As a consequence, ideal
MHD is particularly well suited in astrophysical problems, because of the size
of typical astronomical distances.

In laboratory plasmas, R, is most often smaller than one. A rather careful
analysis performed by Freidberg (1982) leads to the disappointing conclusion
that the domain of parameters for which ideal MHD is valid falls entirely
outside of the thermonuclear fusion domain *.

* We refer to the original paper by Freidberg (1982) for the consideration of an alternative
model (“Perpendicular MHD"") whose validity domain is closer to fusion conditions.
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In order to bring out more clearly the role of the electrical conductivity, we
briefly compare the two extreme cases.

(a) The strongly resistive case: R, < 1.
In this case, eq. (R.4) of table 2.1 reduces to
3,B=D, VB, 3.7
where we introduced the coefficient
2

c
Do= g (3.8)

Equation (3.7) is a typical diffusion equation, and D, is called the magnetic
diffusion coefficient (or magnetic diffusivity). As a result, a magnetic field
configuration initially peaked, say, around the origin, diffuses away and brings
about a decay of the magnetic field intensity. The characteristic time associ-
ated with this process is clearly:

L? 49
TD:D_: =?L%{0,,. (3'9)

It turns out that in a tokamak, this time scale is much longer than the other
relevant time scales connected, say, with the growth rates of MHD instabil-
ities. For this reason, the resistive effects have been considered unimportant in
the early history of fusion physics. This point of view was radically changed
when Furth et al. (1963) showed that a finite resistivity may give rise to
instabilities growing on a much faster time scale (see also Hazeltine and Meiss
1985), such as the celebrated tearing modes. This subject will not be treated in
the present volume. We only mention it here in order to show how careful one
must be before drawing conclusions from the various models.

The diffusive decay of the magnetic field intensity implies that the magnetic
energy is transformed into thermal energy. This is clearly apparent in the
energy equation (R.3), which reduces here to

dp 1

— =-—D, AB|*. :

L = D1V AB (3.10)
The right-hand side is definite positive quantity. This equation therefore

describes the monotonous increase of pressure, hence of thermal energy, due

to Joule heating.

(b) The ideal MHD limit: R > 1.

This case corresponds to the equations of table 3.1. All the dissipative
effects have disappeared in this model. Moreover, the ideal MHD is a typical
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Table 3.1
The equations of ideal MHD.

de _ _ .
80— e(om) (1.1)
du 1
pg; =~ VP BA(V AB) (12)
dpP
=3 I.
dt P veu (13)
aaf v A(uAB) (14)
Constraint
v B=0 (15)
Definitions
1
E=-=(unB) , (1.6)
L
i= 41r(v A B) 1.7)
—_— L_ . A B) (I 8)
0==3v (u ' .

one-fluid model: only the global hydrodynamical quantities p, u, P enter egs.
(1.1)-(1.4). This is a rather curious feature, because we have not supposed that
the temperatures of the two components are equal! Its origin is in the neglect
of the dissipative terms, whose description requires the more refined two-fluid
picture (see the discussion leading to eq. 2.14).

This feature clearly appears in the relation between the energy equation
(1.3) and the entropy balance. We stressed in chapter 6 the difficulty of
defining a total entropy in the case of a two-temperature plasma. However,
after all the idealizations which have led to the present model, it is no longer
possible to distinguish the two components in the equations of table 3.1.
Therefore, the only definition of the entropy consistent with this model is a
global one, proceeding as in the tradltlonal method (de Groot and Mazur
1984) from the Gibbs equation:

is=£—e+P£— -1 (3.11)
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If the internal energy per particle, e, is expressed in terms of the pressure and
the density, we have

3P P

=" = 3.12

2p (y—De (3.12)
We have included the second expression, though it is not really necessary; it
involves the well-known ratio y of the specific heats at constant pressure and
constant volume. For our fully ionized plasma, y = 3. Combining egs. (3.11)
(3.12) with egs. (1.1), (I.3) of table 3.1, we easily find

ds
5= 0, (3.13)

which shows, not surprisingly, that the flows described by the ideal MHD are
isentropic, or adiabatic. In other words, the entropy in every element of fluid
following the motion remains constant in time. There is no entropy produc-
tion, because all the dissipative processes have been neglected in this model.
Another form of (1.3), which is very often found in the literature, is obtained
by a combination with (1.1),

4.2 97 (3.14)

This equation expresses the well-known fact that in an adiabatic flow the ratio
P/p" remains constant in every moving volume element.

We now turn to the consideration of eq. (I.4), which determines the
evolution of the magnetic field. Its physical content can be stated as follows:
the motion of the magnetic field is solely due to its convection by the fluid motion.
This is the main characteristic of the ideal MHD model. The statement is
made more precise by the following frozen-flux theorem due to Alfvén (1950).
In the ideal MHD model, the magnetic field lines behave as if they move with the
plasma. We sketch its proof, following closely Priest (1982).

Consider a closed line C moving with the plasma (i.e., each of its points
moves with the local velocity of the fluid at that point). This line is the
boundary of a region S (see fig. 3.1A). During a time 8¢ an element 3s of the
contour sweeps out an area u 8t A 8s. The magnetic flux passing through this
area is

B+(udt Ads)= —dt(uAB)-8s.
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Fig. 3.1. Proof of the frozen field theorem.

Consider now the total flux through the surface S:
&(1) =/ ds-B(r).
NGO

Its rate of change in time is due to two causes: the magnetic field B(x, ¢)
changes in time at each point, and the boundary S(¢) moves with the fluid.
Hence

d<I>(t)

de -3,B— fds (z A B).

The second integral is transformed into a surface integral by using Stokes’
theorem,

d<I>(t) /dS (
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The right-hand side vanishes identically, on account of (I1.4). Thus, the flux
across a surface moving with the plasma remains constant in time.

Consider now two intersecting magnetic surfaces, i.e. surfaces to which the
magnetic field lines are everywhere tangent (fig. 3.1B). Their intersection is
thus a field line. By definition, the flux through each of these surfaces is zero.
If the magnetic surfaces move with the plasma, the flux through each of them
must remain zero, by the previous theorem. Thus each one remains a magnetic
surface, and their intersection remains a magnetic field line. Hence, the
magnetic field lines move with the plasma.

In Priest’s words: “One refers to field lines being frozen into the plasma;
plasma can move along field lines, but, in motion perpendicular to them, either the
field lines are dragged with the plasma, or the field lines push the plasma’. This
peculiar behaviour is the most dramatic consequence of the assumption
R_, > 1. If the magnetic Reynolds number has a smaller value, the magnetic
field lines may slip through the plasma or (conversely but more significantly):
the plasma may slip through the magnetic field.

We now turn to the last equation affected by the ideal MHD approxima-
tion: eq. (1.6) of table 3.1, which is the “remainder” of the Ohm law. Here we
clearly see the change of status of the various equations. The Ohm law no
longer provides a relation between current and electric field, because the
former dropped out in the limit R, > 1. Thus the Ohm law completely
determines the electric field E, which is produced by the motion of the plasma
through the magnetic field. The electric current is determined separately by
the Ampeére law (I.7). As for the Poisson equation, it is no longer needed for
the determination of the electric field. It becomes a completely marginal
equation (1.8) that determines the electrical charge density which, in turn, is
not needed anywhere in the equations.

An important consequence of (I1.6) is the fact that the electric field is
everywhere perpendicular to both the magnetic field and the plasma velocity:

E-B=0, E-u=0. (3.15)

In particuiar, if in a given situation, an electric field component parallel to
B is found, this is a signature of a finite resistivity effect.

7.4. Magnetohydrodynamics, astrophysics and fusion. The strategy
of fusion theory

We have presented in the previous sections the succession of arguments
leading from the “exact” macroscopic description of the plasma, i.e. the
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dissipative MHD equations, to the ideal MHD model of section 7.3. We
endeavoured to be as critical as possible, trying to pin down every assumption
made in this process. The result is not very satisfactory: The approximations
are not all really justified and are even sometimes inconsistent.

The motivation of this process is the same as the consideration of an ideal
fluid, modelled by the Euler equations in ordinary hydrodynamics, as an
approximation of the real, dissipative fiuid described by the Navier—Stokes
equations. It appears, though, that the coupling with the electromagnetic field
makes this conceptual modelization more difficult in the case of a plasma.
Kulsrud (1983) very properly defines the status of ideal MHD: “[The ideal
MHD equations) are clearly an approximation to the true plasma equations, but
they have so many nice properties that they are the preferred set for describing
macroscopic plasma phenomena’ .

Not surprisingly, ideal MHD was invented by the astrophysicist H. Alfvén,
and the most satisfactory expositions of this discipline are due to the astro-
physicists Cowling (1957), Parker (1979) and Priest (1982). It is indeed in the
field of astrophysics that most situations lying really within the validity
domain of ideal MHD are found. The reason is the enormous size of the
characteristic length scales in these cases. Let us quote, among the problems
dealt with in astrophysical MHD: the structure of cosmical (interplanetary,
interstellar, intergalactic...) magnetic fields, the solar wind, the solar flares
and other aspects of the solar activity, the structure of planetary magneto-
spheres, etc. In these problems, the collisional dissipation is absent (almost by
definition), therefore they fall outside of the scope of this book. In some cases,
however, when a strong turbulence develops for various reasons, an “anoma-
lous transport” may appear and produce important effects. Such problems will
however not be treated in the present volume.

With the emergence of the idea of controlled thermonuclear fusion as a
terrestrial source of energy, the physicists began to acquaint themselves with
the findings of the astrophysicists (it is not a fortuitous coincidence that one of
the earliest promotors of controlled fusion was the astrophysicist L. Spitzer
Jr.). The most attractive idea that came from ideal MHD was Alfvén’s frozen
field theorem. Indeed, it suggested that if a “closed” magnetic field configura-
tion could be realized, this configuration might act as a “trap” or “bottle” for
the plasma. The latter could thus be confined in a finite region and be heated
to extremely high temperatures; the fusion reactions could then proceed “at
ease” in this environment and produce useful energy.

It was realized afterwards that the picture was too strongly idealized. As
shown in the previous section, the condition' R,, > 1 is very hard to satisfy in
terrestrial laboratory conditions because of the relative smallness of the length
scales involved. The plasma would necessarily “leak” through the magnetic
field. The next, less ambitious goal became the control and optimization of
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these leaks, in order to confine the plasma for a finite time, long enough to
allow the production of a sufficient amount of fusion energy before break-
down. In this perspective, transport theory becomes a key discipline for
understanding and controlling the various leaking mechanisms that may exist
in a plasma.

Among the many existing expositions of MHD theory from the fusion
viewpoint, we quote the following texts: Braginskii (1965), Shafranov (1966),
Kadomtsev (1966), Soloviev and Shafranov (1970), Bateman (1978), Golant et
al. (1980), Freidberg (1982), Goedbloed (1983), Kulsrud (1983).

The strategy set up in fusion theory proceeds (schematically) in several
steps.

(a) Equilibrium theory. In a first step, one tries to find a “reference”
(so-called) “equilibrium” state in which all hydrodynamical quantities are
time-independent. In the simplest cases, it is also assumed that the equilibrium
is truly static, i.e. #w=0 *. The problem consists of finding a magnetic field
and a pressure field satisfying the mechanical equilibrium condition derived
from (1.2),

1
vP= —EB/\(V A B). (4.1)

This problem will be discussed in chapter 8. Its solution leads to a variety
of equilibrium configurations (e.g. tokamak, stellarator, spheromak, . ..), most
of which have the well-known toroidal symmetry.

(b) Stability theory. When an equilibrium solution is found, its stability
against small perturbations must be studied. It so happens that no universally
stable magnetic field confinement exists: the plasmas are plagued by an
enormous variety of instabilities. Some of these can be explained in the
framework of ideal MHD; for others, the role of dissipative processes is
essential; finally some (““micro-instabilities”’) are produced by specific forms
of the non-equilibrium particle distribution functions.

The identification of the instabilities, the calculation of their thresholds and
growth rates, the evolution of an initially growing perturbation and its
ultimate saturation, which may involve a complete reorganization (bifurcation)
of the plasma state, the possible onset of a turbulent state, are some of the key
problems in linear and non-linear stability theory.

* This assumption raises a problem. If u=0, then R, =0 (see eq. 3.1) and ideal MHD is
completely invalid! However, the only equation which remains non-trivial in table 3.1 is the
momentum balance equation (1.2), which is nor affected by the ideal MHD approximation.
Nevertheless, the validity of studying small-velocity perturbations in stage (b) by using the ideal
MHD model must be carefully questioned!
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(c) Transport theory. As we know. from the previous chapters, transport
theory necessarily goes beyond the ideal hydrodynamical framework. The
careful study of the dissipative processes is essential for the understanding of
the leakage through the confining magnetic surfaces.

Here we are faced with a new problem. Contrary to our assumptions of the
classical theory, the basic confining magnetic field is fundamentally inhomoge-
neous and curved. As a result, the motion of charged particles in such a field
can be qualitatively (topologically) different from the motion in a straight,
almost homogeneous field. As a result, the transport theory must be very deeply
reconsidered when dealing with a magnetically confined plasma. This is a
relatively new discovery (1967) which led to a new corpus of knowledge called
the Neoclassical transport theory. The very unusual phenomena induced by the
magnetic field geometry on the mechanisms of transport will be the object of
the second volume of our work.

(d) Heating theory. Once a (not too unstable) “equilibrium”™ state is estab-
lished, the temperature must be raised in order to reach internal ion tempera-
tures of the order of 100 keV. Various means are at our disposal for achieving
this goal. Ohmic (or better: Joule) heating by the electric current induced in a
confined plasma is necessarily limited in scope. Indeed, we know from eq.
(5.5.12) that the electrical conductivity o, grows like 7>/ with temperature;
thus, the higher the temperature, the less efficient becomes the Joule heating
mechanism. One therefore uses additional heating procedures, such as neutral
beam injection or RF heating,

In the first case, intense highly energetic beams of neutral hydrogen or
deuterium particles are injected into the plasma; their neutrality ensures an
easy penetration into the plasma. Ultimately, their energy is transferred to the
plasma by collisions.

In the second method, strong electromagnetic radiation beams are injected
into the plasma. Their frequency must be carefully chosen in order to ensure
their penetration into the medium, but also the exchange of energy with the
particles through resonances at various oscillation eigenmodes of the plasma,
such as the electron cyclotron waves (ECR), the ion cyclotron waves (ICR), the
lower hybrid waves (LHR) or the Alfvén waves. The interaction of the heating
beam with the plasma produces strong deformations of the distribution
function at certain well-defined positions in space and in certain regions of
velocity space, determined by the resonance conditions. The resulting non-
equilibrium distributions may strongly affect the stability properties, as well as
the transport properties of the plasma.

This remark shows that the four stages, which we described separately, are
actually strongly interconnected. Other important examples are easily found.
For instance, it may well be important to include a non-vanishing velocity into
the basic “equilibria studied in stage (a). This is especially desirable in the
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presence of heating by neutral beam injection. In this case, the effect of the
viscosity can no longer be neglected and the complete equation (2.1) must be
solved. Such studies are only in a beginning stage (see, e.g. Wobig 1985).

Another, very important example is the following. Certain types of instabil-
ity studied in stage (b) (e.g. the tearing modes) may lead, through the so-called
magnetic reconnection phenomenon, to a radical change of topology of the
ideal magnetic surfaces determined in stage (a). Typical examples of such
changes are the formation of magnetic islands or even the complete chaotiza-
tion of the magnetic field. The reader is advised to have a mere look at the
pictures represented in the paper by White (1984), in order to grasp the
complexity of the structure of the magnetic field in a (more or less) realistic
situation. Such new magnetic field topologies lead to a complete change of
character of the transport mechanisms, giving rise to the so-called anomalous
transport. These problems will however not be faced in the present volume.

The fusion theory community begins to be conscious of the necessity of an
integrated study of all these aspects of the magnetic confinement. The treat-
ment of these problems involves enormous difficulties, both in analysis and in
numerical computations; extremely important results are, however, expected
to come out in the future from such a global approach.
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Appendix

Gl

Basis functions in velocity space

Gl1.1. Expansions around the reference distribution function

The transport theory of plasmas (or, for that matter, of any system) consists of
the evaluation of certain macroscopic quantities of hydrodynamical interest,
such as the fluxes of matter, momentum or energy. These quantities are
characteristic of a system in a non-equilibrium state, hence they require the
determination of the non-equilibrium distribution function. This is, in general, a
very difficult problem.

All the plasma regimes studied in this book have one property in common.
For varied reasons (discussed in the main text), their state is not very far from
the equilibrium state. The distribution functions of the particles of species «
can therefore be represented in the form

1oz 1) =1 (0)[1 +x*(v)], (1.1)

where f*°(v) is the local plasma equilibrium distribution function, defined in eq.
(4.2.6), and x*(v) is the deviation characterizing the non-equilibrium state.
(We do not write down explicitly the dependence on ¢ither the spatial variable
x, or the time ¢, which are irrelevant in the present context.) It is assumed that

|x*(v) | <1 (1.2)

for all values of the variables. If we use the dimensionless velocity variables ¢
(defined in eq. 4.3.4), we considerably simplify the notations (see eq. 4.3.8) and
we are left with a definite mathematical problem. We want to construct
various useful representations of functions of the form

f(e)=¢"()[1 +x(e)]. (1.3)

The natural thing to do for the study of the non-equilibrium deviation x(c)
is to expand along an infinite basis of polynomials spanning the functional
space of x(c). The definition of the function x is then equivalent to the
specification of the set of coefficients entering its expansion. This technique is

317
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widely used in quantum mechanics. The choice of a “natural” or “useful” set
of polynomials is dictated by the form of the reference function ¢°(c). In all
the ultimate problems of kinetic theory, the distribution function enters as a
weight function under an integral necessary for the calculation of average
quantities. Hence, it is desirable that the polynomials of the functional basis
be mutually orthogonal with respect to a scalar product, defined with ¢°(c) as
a weight function.

This discussion is straightforward mathematics. Some complications arise,
however, from the fact that we are dealing here with functions x(¢) of three
variables (rather than a single one, as in elementary quantum mechanics). In
particular, the expansions take quite different (though interrelated) forms
according to the type of coordinates used (e.g. Cartesian or spherical coordi-
nates). It appears useful to give here a brief, but comprehensive discussion of
these questions, which are not often presented systematically either in
mathematical books on special functions, or in books on kinetic theory.

G1.2. Reducible tensorial Hermite polynomials

It is well known from elementary quantum mechanics that the orthogonal
basis associated with a Gaussian weight function is made up of the Hermite
polynomials. These require a generalization, because we are interested in
functions of three variables.

Specifically, let ¢ be a (dimensionless) vector in three-dimensional Euclidean
space. Its Cartesian components are denoted by ¢, (r =1, 2, 3) and its length
is ¢ =(cf + c2 + c¢)V/2. The reference (or weight) function is

"(c)=(2m) e 2, (2.1)

which is normalized to one:

fdc ¢’(c) = f_m;)dc]f_woodczf_wwdc3 ¢’(c)=1. (2.2)

The reducible tensorial Hermite polynomials (Grad 1949) are defined by a
natural generalization of the Hermite polynomials in one dimension
[Gradshtein and Ryzhik 1980, Abramowitz and Stegun 1965):

5 2,, 0 0 ] 2
(m) ={(— m /2 _= RN —e”/2
H7, (e)=(=1)" e Farmgrm o g—e " /2 (2.3)

4 r2

rm

Note that this object is a tensor of rank m (it has exactly m indices:
..., I,). By construction, it is completely symmetric in all its indices.
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Table 2.1
Reducible tensorial Hermite polynomials.

HO9(c)=1

AD(e) =co

HD(e) =y = 8pn

D, (€) = entnts = (enur + s + )

H (€)= €nn,Cs — (CmnCubps + €85 + CuCy + €uC8 s+ €aC 8y + €,68,,)
+ BBys + 8 B + 8,0,

The important property of the tensorial Hermite polynomials is their
mutual orthogonality over the domain ( — oo, o) of each variable c,, and with
¢°(c) as a weight function:

...........

8,808, + ) (2.4)

Sm r152°r251 mSm

=8, (8,8, -8,

riSyrasy ” 'm

m! terms corresponding to all permutations
of the set  (sy,...,5,,)

Thus, explicitly,

[de () HORO -1,
fae () AP =3,

0 FQ2) 72 _
[de $°(c) HRHD, =8,.8,.0,+ 8,.8,.., (2.5)

The first few of these polynomials are listed in table 2.1.
The function x(c¢) can be expanded as

1 - m T(m
Omhfl.?.rer(,..).rm(c)« (2.6)

x(e)=

ﬁ[\’]s
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(Summation over repeated tensor indices is understood, as usual.) Because of
the orthogonality of the polynomials, the reducible Hermitian moments hﬁ]'") .
are obtained as

R, = [de #°(e) x(e) AL, (o). 2.7)

Although these tensorial Hermite polynomials are used in several classical
works [notably those by Grad (1949), who initiated the celebrated “moment
method”], they present a serious disadvantage. Indeed, there is no one-to-one
correspondence between the reducible Hermitian tensors and the physical fluxes.
This is because each completely symmetric tensor H, (m?, can be invariantly
decomposed into combinations involving lower rank irreducible tensors. In
simple words, any symmetric tensor A can be “pruned”, by subtracting
systematically the tensors obtained by contraction over all the available pairs
of indices. Thus, for instance,

Ar: = Ar: + (%—Amm) 6

Ar:t Ar:t+ ( rmm8 +Am:m6rt+jmm18r:)' (28)

The irreducible tensor A,; has zero trace; similarly, the contraction of the
irreducible tensor A,;, over any pair of indices yields zero.

As a result of this situation, if we wish to pick up, say, all the vectors in
expansion (2.6), we have to look for them in all the odd-rank reducible tensors.
It is, however, desirable to write the expansion of the function x(c¢) in such a
way as to group together all the terms corresponding to the same type of
irreducible anisotropy (such as: vectors, traceless second-rank tensors, ...).

This can be achieved in two ways. One consists of performing the “ pruning”,
as illustrated in (2.8), on all the reducible Hermite tensors. The result is the
definition of a set of jrreducible tensorial Hermite polynomials, which possess
the desired property. This direct procedure easily yields the first few poly-
nomials, but is not simply amenable to a general construction. A second
method consists of going through an intermediate change of variables, which is
of interest in itself.

G1.3. Spherical harmonics, Laguerre—Sonine polynomials, Burnett
functions

We go over from the Cartesian coordinates (¢, ¢,, ¢3) to the spherical
coordinates (x, 8, ¢) by defining the variable x as

ct=x, or c=y2x (3.1)

M=
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(physically, x represents the dimensionless kinetic energy). The individual
components transform as

c1=\/2_xsinﬂcos P,

cz=\/2_xsin0 sin ¢,

c;=v2xcos 0. (3.2)
We note that the Jacobian of this transformation is

J=y2xsin 6. (33)

The reference function now depends on the single variable x. We thus define

o (x) = %e"‘ (3.4)

which is normalized as

/°°dx\/§¢°(x) -1. (3.5)
0
We define a natural scalar product of two (complex) functions F, G as
(F1G)=—= [Tdxvxe ™5 [(d0 sin 6 "dg F*(x, 0, )
vz Jo 4 Jy 0
XG(x, 8, ¢). (3.6)

(This definition clearly yields: (1|1) =1.)

With this scalar product, the natural basis for the expansion of any function
of the angles 0, ¢ is provided by the well-known spherical harmonics ¥," (8, ¢),
defined as [Margenau and Murphy (1943), Morse and Feshbach (1953), Korn
and Korn (1968), Smirnov (1972), or any good book on quantum mechanics or
electromagnetism]

Y"(6, @) = (—1)"a]"P/"(cos 8) &', (3.7)

where P;"(z) i3 the associated Legendre function; / is a non-negative integer,
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Table 3.1
Spherical harmonics.

Yl =1
=y3cos §
Yli1=¢\/§sin0ei"p
=\/?(3 cos’ —1)

YyEl=F ¥ cos §sinfe*i®

Y,Ei=yF sin’f et ??

whereas m is a positive or negative integer (or zero) in the range |m| < /. The
normalization coefficient is

=((21+1)E; g) . | (3.8)

The spherical harmonics have the following orthogonality property:
1 7 . 27 m’ x m —_
2 f 46 sin 6 /0 do Y7 *(0, 9) Y (0, 9) = 8,18, - (3.9)

The first few spherical harmonics are listed in table 3.1.

We now complete the basis in order to take into account the energy variable
x. With the weight function (3.4), the natural basis functions are related to the
associated Laguerre polynomials, L.*1/?(x), (Margenau and Murphy 1943,
Gradshtein and Ryzhik 1980, Abramowitz and Stegun 1965, Smirnov 1972).
These are frequently called Sonine polynomials in the kinetic theory literature.
We therefore call them here Laguerre—Sonine polynomials. Their exact defini-
tion varies slightly from one author to another (the differences are in the sign
of the odd polynomials and the normalization factors ). We adopt here the
following definition:

‘ min 1 . n! 2n+ 20+ )N
1+1/2 _ _\mt
L7 (x) = oy z—:o( ) 2" " mi(n—m)! 2m+20+ 1)1 o

(3.10)
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where / and n are non-negative integers (or zero). The normalization coeffi-
cient is

et 12
- 3.11
%nt n!(2n+2l+1)!!) (3.11)
A compact representation of these polynomials is
n X - d" -x .n
Lf,+1/2(x)=(—) a,, e x (I+l/2)d_xn(e X +I+l/2). (312)

The first few Laguerre—Sonine polynomials are listed in table 3.2.

The Laguerre-Sonine polynomials are very useful for the expansion of
functions g(x), depending on the single variable x. These functions are
represented as

g(x)= X ATVALT2(x), (3.13)
n=0

where the coefficients are given by
2 =)
AU+1/2) = —f dx e™* xUHD2LIH172 () g(x). (3.14)
7 Y0

The choice of the particular family of Laguerre—Sonine polynomials (i.e. the
choice of the value of /) appropriate to the problem is dictated by the context.

The spherical harmonics and the Laguerre—Sonine polynomials are now
combined in the construction of a set of basis functions to be used for the
expansion of any function of the three variables x, 6, o;

Byi(x, 8, 9) =x""L,"(x) Y"(6, 9). (3.15)

These functions are properly called Burnett functions, because they were
extensively used by Burnett (1935) in his classical work on the Boltzmann
equation. An extensive study of their properties can be found in the papers by
Weinert (1981, 1982). Combining definition (3.6) and results (3.9) and (3.14),
we find

<B:'/| 77D = B 81 By (3.16)

The expansion of an arbitrary function x(x, 6, ¢) on the Burnett basis is
performed as

X(x 0.9)= L T ¥ 0iBix. 6. 9) (3.17)

n=01=0m=—1
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Table 3.2
Laguerre-Sonine polynomials.

[G1

1=0
LY (x)=1

L) =3 x-9
LY?(x) =\/?—5‘(x2 -5x+%)

2
LVi(x)= x3—Ax2 105, 103,
? 3»/3?( : * ’
L (x) - ;?(X4 —18x7+ Px? - Px + 57)
I=1

LA =y%
LYY (x) = %(x -3

V15

L%/z(x)= 25 (x2—7x +¥)

Lg/z(x)=%(x3—¥x2+¥x—¥)

LY (x)= 9‘/33?5 (x*—22x3 + Bx? - D5 + )
=2

L0 ==

Ly (x) = % x=1)

Lg/z(x)=%(x2—9x +D

Lg/z(x)=ﬁ(x3—%x2+¥x—%)

Li/z(x)= 22 (x4—'26x3+%9‘x2—$x+9?'—;9)

9y5005

From the orthogonality property of the Burnett functions follows the

definition of the expansion coefficients,

i = #/(;wdx/:dﬂ'/:"d(p sin §yxe > B7*(x, 0, ¢) x(x, 8, ¢).

These coefficients will be called Burnett moments.

(3.18)
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Expansion (3.16) can be written in the following, more explicit form, using
(3.16),

o0 0 1
X(x, f, ¢’)= Z bgn,oLln/z(x)'*' Z Z b:;"m+1,1L3/2(x)\/;Y1m(x)

n=0 n=0m= -1

™M~

+ ) b i2a L2 (x) xY" (8, @) + - - - . (3.19)
n=0m 2 .

This form realizes the purpose announced at the end of section G1.2.
Indeed, all the terms in the first group (/ = 0) depend only on the length of the
vector, ¢ (i.e. on x); hence the moments b,, , are scalars.

In the second group (/= 1) we find, for given n, the combination

(b5t Vxsin @ e ™+ by, ., Vxsinfe®+b3, ., Vxcos 6).

Because of (3.2), it is easily recognized that this combination is proportional to
the scalar product of the vector ¢ with a vector b,, ., ;. In other words, the
three moments by, ., for m= —1,0, 1, are the three components of a vector.

A similar argument leads to the conclusion that the five components
xY;"(8, ) correspond to the components of the tensor (cc — ic? I). Hence,
the five moments b3, ,,, (m= —2, —1, 0, 1, 2) are the components of a
second-rank tensor with zero trace.

In conclusion, each group of terms in (3.19), corresponding to a given value
of I, contains only moments of the same tensorial character.

G1.4. Irreducible tensorial Hermite polynomials

Although the expansions of the form (3.19) explicitly display the various
anisotropies and are widely used in the kinetic theory literature, they have a
major disadvantage. Because of the use of spherical coordinates, the notations
become quite “distorted” and untransparent. The use of Cartesian coordinates
is much to be preferred for the expansions. We thus revert to the coordinates
¢, (r=1,2, 3) used in section G1.2.

Consider the first group of terms (/ = 0) in (3.19). The polynomials L/%(x),
of degree n in x, become polynomials of degree 2n in ¢ ( the length of the
vector c¢); they will be denoted by H?™(¢). This group of terms will then be
rewritten as

o0

L 08,03 (x) = £ HOPHOMc). (4.

n=0
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The polynomials H®™(¢) will be called scalar (irreducible) Hermite poly-
nomials. Their exact definition will be given below.

Consider now the second group of terms (/=1) in (3.19). As explained
above, the three functions vx Y;"(8, ¢) (m= —1, 0, 1) correspond to the three
components of the vector c. Hence, these terms may be written in the form

o0 1 (<3
Y L 85l (x) XY(6, @) > X AP Ve Hpp(c)
n=0m=-1 n=0

= E hs.2"+l)H,.(2"+l)(C) (42)

n=0

with the usual summation over the repeated vector indices r. H[Z,, is clearly a
polynomial of degree 27 in variable ¢. The moments %"V (r=1, 2, 3), for
each value of n, are the components of a vector. A similar transformation is
performed on the other terms of (3.19), which is rewritten as

o0 o0
x(c) — Z h(2n)H(2n)(c) + Z hs.2"+l)H,.(2"+l)(C)

n=0 n=0
+ Z REPHSE () + - - - (4.3)
n=1

The coefficients of this expansion are called irreducible Hermitian moments,
and are qualified by their tensorial nature. Thus, H®" are scalar Hermitian
moments, h®"*V are vectorial Hermitian moments, h™ are traceless tensorial
Hermitian moments, etc. It is shown in the main text that these irreducible
Hermitian moments have very interesting properties, which make them
supremely suitable for transport theory.

The basis functions ‘H?"(¢), H®"*Y(c), etc. are also characterized by
their irreducible tensorial character. Their form is obtained, up to an ap-
propriate normalization constant, from the equivalences expressed in (4.1),
(4.2), together with relations (3.1), (3.2). We thus obtain the following relations
between the first three classes of irreducible tensorial Hermite polynomials
and-the Laguerre-Sonine polynomials,

HO"(e) = L/(3¢%),
H(2n+l)(c) ‘/—c L3/2

HED() = [T (e~ 38, ) LA (LE?). (@9



Table 4.1
Irreducible tensorial Hermite polynomials

Scalars

H®(e)=1

HO(¢) = %(cz -3)

1
H®(e)= (c*-10¢? +15)
2y30
1
H®c)= (c®~21c* +105¢2 —~105)
12/35
Vectors
HM(e)=c,

H®P(c) = ﬁc - (c2—5)

1
He) = ¢, (c* =142 +35)
2/70
1
H(e) = ¢,(c® —27c* +189¢2 —315)
12/105

Traceless tensors of second rank

1
HP(c) = ﬁ(c,c, -3¢%8,)

H®(e) = —(c,c —1c28 Y2 -7
/— s 3 rs

H®(¢) = (c,c;—3¢%8, ) c* —18¢% +63)

1
12/7
Third-order anisotropy

3 1.2
H,(”),(c) =c,c,c, —3¢%(e8,, + ¢, +c,8,,)

Fourth-order anisotropy

4 -
H () = cecpe,—7¢2(c,e8,,+ 0,8, + €68, + e 8+ e 8., + c,c.8,)

+ 58,8, +8,8,,+8.5,,)

s pq rpUsq

sypruoudjod a11uia gy [p110SUd] 31qIONPILI] 1o

LTE
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Their explicit form is obtained from these formulae, combined with (3.10),
(3.11).

Scalar Hermite polynomials

. @nrln
m!(n—m)! 2m+1)! ’

HE () =B T (-1

1 1/2
(e | —— | . 4.5
2 (2"n!(2n+ 1)!!) (45)

Vector Hermite polynomials

2n+ 3)N
2n+1) 1 m-+n (
H, () = Biiire, E( ) m'(n m)! (2m + 3! ©
3 1/2
o = —— 4.6
Binnr (2"n!(2n+3)!!) (46)
Traceless tensor Hermite polynomials
HEV () = BT (¢,c, — §c%8,,)
n—1
m+n— _1)! (2n+3)!!
X _pymenr__(n
X (=1) mi(n—m—1)! CZm+5)1 <
15 1/2
g 4
B 2"(n—1)!(2n+_3)!!) (“7)

A list of the first polynomials in each of these families is given in table 4.1.
It is easily checked that these polynomials are identical to those obtained from
the reducible Hermite polynomials by the “pruning” procedure described at
the end of section G1.2. The relation between reducible and irreducible
Hermite polynomials is the following:

HO = H(O), Y =pgo
AP = V2(HY +(/35) " H™,).

A= HY+ [T (HOS,+ HO5,+ HPS, ). 43)
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The irreducible Hermite polynomials have the following orthogonality prop-
erties, associated with the Maxwellian weight function ¢°(¢), defined in (2.1),

Scalar Hermite polynomials:

fdc ¢°(c) H*™(c) H?M(c) =8, (4.9)
Vector Hermite polynomials:

[de 6°(c) HP™D(e) HE"* () =8,,8,. (4.10)
Traceless tensor Hermite polynomials:

[de 6°(c) HE™(e) HEM(c) = 48,,,(8,8,+ 8,8, — 38.8,,). (411)

rp-sq rq®sp rsTpq

From this orthogonality property follows the definition of the irreducible
Hermitian moments, i.e. the coefficients of expansion (4.3),

KP L= [de ¢°(c) HSP, (e) x(e), (4.12)

where H'?(c¢) is any irreducible tensorial Hermite polynomial of degree p.
(Note that, necessarily, such an object is a tensor of rank less than or equal to
the degree p: g < p).

We now list a set of useful recurrence relations and of differential relations
for the irreducible Hermite polynomials. The remarkable fact about these is
that all but one of them involve at most three polynomials.

Direct product with c:

cgem = [2E3 pany 1/ﬂ @D
r 3 r 3 r s
¢, HO"+D = /2(2"5+ 5) HO™D 4 \/4" HOP

18, (/6(n+ 1) HO"*® + \3(2n + 3) HE™). (4.13)
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Contraction with c:

¢, H?"* D =\J6(n+1) H®"*? + \3(2n + 3) H®",

CrHr(SZ")= %(ﬁHs(znﬂ)_,_ 5(2_”2"'%2 Hs(Zn—l))‘

Gradient:

a H(Zn)= _2_riH(2n—1)
V3 B
H(2n+1) [4n H(2n) 2”_;‘_2 HC™s,,.

Divergence:

%H}Z"“) =/3(2n+3) H®",

9 gam_ 10 [2n+3

= 2n— 1)
3, i =3\ 10

Contraction with ¢ of the gradient:

0

CPKH(Z") =2nH®" +2n(2n+ 1) H®"~?,
14
CP%H,(2"+1) =2n+1)HP" P+ 2n(2n+3) HE" Y,
14
cpaiHa") =2nHZ" + {(2n - 2)(2n + 3) H" 2.
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